## Lattice gauge theory at the electroweak scale









#### David Schaich (U. Bern)

#### Strong dynamics at the electroweak scale Montpellier, 6 December 2017

schaich@itp.unibe.ch

www.davidschaich.net

# Overview and plan

Lattice gauge theory is a broadly applicable tool to study strongly coupled systems

Especially important

when QCD-based intuition may be unreliable

A high-level summary of lattice gauge theory

 $\beta$  functions and anomalous dimensions

Light scalar from near-conformal dynamics

More possible topics for discussion

- Electroweak S parameter
- Composite dark matter
- Multi-rep. composite Higgs UV completions





# The essence of lattice gauge theory

Lattice discretization is a non-perturbative regularization of QFT



Formulate theory on finite, discrete euclidean space-time  $\longrightarrow$  the lattice Spacing between lattice sites ("a")

 $\rightarrow$  UV cutoff scale 1/a

Removing cutoff:  $a \rightarrow 0$  (with  $L/a \rightarrow \infty$ )

Finite number of degrees of freedom  $(\sim 10^9)$   $\longrightarrow$  numerically compute observables via importance sampling  $\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \ \mathcal{O}(U) \ e^{-S[U]} \longrightarrow \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}(U_k)$ 

#### Features of lattice gauge theory





Fully non-perturbative predictions from first principles (lagrangian)

Fully gauge invariant—no gauge fixing required

Applies directly in four dimensions

Euclidean SO(4) rotations & translations ( $\longrightarrow$  Poincaré symmetry) recovered automatically in the  $a \rightarrow 0$  continuum limit

## Limitations of lattice gauge theory





#### Need UV completion, (usually) include only strong sector

Finite volume (usually) needs to contain all correlation lengths  $\longrightarrow$  unphysically large masses extrapolated to chiral limit via EFT

Chiral symmetry of lattice fermion operator complicated

Obstructions to chiral gauge theories, real-time dynamics, susy

## Limitations of lattice gauge theory





#### Need UV completion, (usually) include only strong sector

Finite volume (usually) needs to contain all correlation lengths  $\longrightarrow$  unphysically large masses extrapolated to chiral limit via EFT

Chiral symmetry of lattice fermion operator complicated

Obstructions to chiral gauge theories, real-time dynamics, susy

### Lattice fermion discretizations

Tension between chiral symmetry vs. 'doubling' of lattice fermions

Naive  $\longrightarrow 16F$  continuum fermions from *F* lattice fields, large U(4*F*)<sub>V</sub> × U(4*F*)<sub>A</sub> chiral symmetry

**Staggered**  $\rightarrow$  4*F* continuum fermions, U(*F*)<sub>*V*</sub> × U(*F*)<sub>*A*</sub> chiral symm.

**Wilson**  $\longrightarrow$  *F* continuum fermions, no chiral symmetry

**Domain wall**  $\longrightarrow$  *F* continuum fermions,

lattice "remnant"  $SU(F)_V \times SU(F)_A$  chiral symmetry



# Symmetries of lattice fermions

Different lattice symmetries for fixed  $N_F$  continuum fermions

Domain wallStaggeredWilson $SU(N_F)_V \times SU(N_F)_A$  $U(N_F/4)_V \times U(N_F/4)_A$ None



 $\begin{array}{l} \text{All} \longrightarrow \text{same UV continuum limit} \\ (\text{`lattice universality'}) \end{array}$ 

Possibility different lattice symmetries  $\longrightarrow$  different IR dynamics?

Example of 3d O(n) scalar model

# Lattice gauge theory beyond QCD

Lattice calculations especially important for non-QCD strong dynamics

 $\begin{array}{l} \mbox{Exploratory investigations of representative systems} \\ \longrightarrow \mbox{elucidate generic dynamical phenomena, connect with EFT} \end{array}$ 

arXiv:1309.1206

arXiv:1510.05018

arXiv:1701.07782





# **Executive Summary**

- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- Explore the unknown: new particles, interactions, and physical principles.

# Lattice gauge theory beyond QCD

Lattice calculations especially important for non-QCD strong dynamics

 $\begin{array}{l} \mbox{Exploratory investigations of representative systems} \\ \longrightarrow \mbox{elucidate generic dynamical phenomena, connect with EFT} \end{array}$ 

arXiv:1309.1206

arXiv:1510.05018

arXiv:1701.07782





# **Executive Summary**

- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- Explore the unknown: new particles, interactions, and physical principles.

May 201

# Non-QCD strong dynamics

Two main directions (not mutually exclusive)

Near-conformal dynamics from many fermionic d.o.f.

 $\longrightarrow$  large number of fundamental fermions or a few in a larger rep

Different symmetries from different gauge group or reps

 $\rightarrow$  (pseudo)real reps for cosets SU(*n*)/Sp(*n*) or SU(*n*)/SO(*n*)



Today focus on near-conformality

Study a few representative systems, look for similarities/difference vs. QCD

Start with non-perturbative  $\beta$  function

## $\beta$ function motivation



Asymptotic freedom in UV  $\longrightarrow b_1 = \frac{1}{3} [11C_2(G) - 4N_FT(R)] > 0$ 

 $b_2 < 0$  might give non-trivial conformal fixed point in IR Banks & Zaks make argument rigorous for  $b_1 \approx 0$ 

# Lattice $g^2$ for non-perturbative $\beta$ function

First step: Define measurable  $g^2$  with scale given by lattice size L

#### Use Yang–Mills gradient flow

(integrating infinitesimal smoothing operation)

Local observables measured after "flow time" tdepend on original fields within  $r \simeq \sqrt{8t}$ 



Flowed energy density  $E(t) = -\frac{1}{2} \text{Tr} [G_{\mu\nu}(t)G^{\mu\nu}(t)]$ perturbatively gives  $g_{\overline{\text{MS}}}^2(\mu) \propto t^2 E(t)$  with  $\mu = 1/\sqrt{8t}$ 

Tie to lattice size by defining  $g_c^2(L; a)$  at fixed  $c = L/\sqrt{8t}$  (scheme dependent as expected)

#### Step scaling for non-perturbative $\beta$ function

Next step: Scale change  $L \longrightarrow sL$  gives discrete  $\beta$  function

$$\beta_{s}(g_{c}^{2};L) = \frac{g_{c}^{2}(sL;a) - g_{c}^{2}(L;a)}{\log(s^{2})} \quad \xrightarrow{s \to 1} \quad -\beta\left(g^{2}(\mu^{2})\right)$$



 $N_F = 12$  staggered fermions, bare coupling  $\beta_F \simeq 12/g_0^2$ 

With 
$$s = 3/2$$
 have $L = 12 \rightarrow 18$  $16 \rightarrow 24$  $20 \rightarrow 30$  $24 \rightarrow 36$ 

s = 2 and 4/3 also accessible

 $g_c^2$  for all *L* cross around  $g_c^2 \approx 7 \longrightarrow \beta_s(g_c^2; L) = 0$ Does  $\beta_s$  remain zero as  $L \to \infty$ ?

#### Step scaling for non-perturbative $\beta$ function

Next step: Scale change  $L \longrightarrow sL$  gives discrete  $\beta$  function

$$\beta_{s}(g_{c}^{2};L) = \frac{g_{c}^{2}(sL;a) - g_{c}^{2}(L;a)}{\log(s^{2})} \quad \xrightarrow{s \to 1} \quad -\beta\left(g^{2}(\mu^{2})\right)$$



 $N_F = 12$  staggered fermions, bare coupling  $\beta_F \simeq 12/g_0^2$ 

| With $s = 3/2$ have |                  |
|---------------------|------------------|
| L=12 ightarrow18    | 16 ightarrow 24  |
| 20  ightarrow 30    | 24  ightarrow 36 |

s = 2 and 4/3 also accessible

 $g_c^2$  for all *L* cross around  $g_c^2 \approx 7 \longrightarrow \beta_s(g_c^2; L) = 0$ Does  $\beta_s$  remain zero as  $L \to \infty$ ?

#### Continuum extrapolation

#### Final step: Extrapolate $(a/L) \rightarrow 0$ to obtain continuum $\beta_s(g_c^2)$



Simple  $(a/L)^2 \to 0$  extrapolations fine near gaussian UV fixed point May need  $g_c^2(L; a) - g_{\star}^2 \propto L^{\gamma_g^*}$  finite-size scaling near IR fixed point...

#### Current status of staggered $N_F = 12 \beta$ function

Developing tension between two independent staggered analyses  $\longrightarrow$  not yet consensus about  $N_F = 12$  fixed point



Tension related to  $(a/L)^2 \rightarrow 0$  extrapolations vs. finite-size scaling?

# $\beta$ function wrap-up: Challenge I

 $\beta$  function becomes very small as  $N_F$  increases

Order of magnitude decrease for  $N_F = 8$  (left) vs.  $N_F = 12$  (right)



Hard to distinguish slow running vs. no running on finite lattices

# $\beta$ function wrap-up: Challenge II

#### Different symmetries of lattice fermions

 $\longrightarrow$  IR fixed points in different universality classes?



Recently reported tensions between staggered vs. domain wall results  $\longrightarrow \mbox{currently developing story}$ 

## Anomalous dimension motivation

At IR fixed point, universal anomalous dimensions  $\gamma^* \longrightarrow$  scheme-independent critical exponents characterizing CFT

Large  $\gamma$  wanted for fermion mass generation by new strong dynamics (hopefully discussed in previous talk)

Near-conformality  $\longrightarrow$  scheme and scale dependence negligible?

Plan: Focus on staggered  $N_F = 12$  IRFP

- Already saw  $\gamma_q^{\star} \approx -0.26$  from slope of  $\beta$  function
- Extract mass anomalous dimension  $\gamma_m^{\star}$  from Dirac eigenmodes
- Extract  $\gamma_m^{\star}$  and  $\gamma_g^{\star}$  from spectrum finite-size scaling
- Prospects for baryon anomalous dim. for partial compositeness

## $\gamma_m^{\star}$ from Dirac eigenvalue mode number $\nu(\lambda)$

 $\mathcal{L} \supset \overline{\psi} \left( \not\!\!D + m 
ight) \psi \quad \longrightarrow \quad \not\!\!D ext{ eigenvalues sensitive to } \gamma_m^\star = \mathbf{3} - \mathsf{d} \big[ \overline{\psi} \psi \big]$ 



Mode number RG invariant  $\longrightarrow 1 + \gamma_m^* = \frac{4}{1 + \alpha}$  (Del Debbio & Zwicky)

# Scale-dependent $\gamma_{\text{eff}}(\lambda)$ from eigenmodes

 $\lambda$  defines energy scale  $\longrightarrow \nu(\lambda)$  gives effective  $\gamma_{\text{eff}}(\lambda)$  at that scale



Monitor  $\gamma_{\text{eff}}(\lambda)$  evolution from perturbative UV to strongly coupled IR

# $\gamma_{\rm eff}(\lambda)$ from eigenmodes for $N_{F}=$ 12

Fit  $\nu(\lambda) \propto \lambda^{1+\alpha}$  in small range of  $\lambda \longrightarrow 1 + \gamma_{\text{eff}}(\lambda) = \frac{4}{1 + \alpha(\lambda)}$ 



 $\nu(\lambda)$  computed stochastically

Include fit ranges in error bands

Multiple *L*<sup>4</sup> volumes overlaid, *L*-sensitive data dropped

All systems have  $\rho(0) = 0$ 

Strong dependence on irrelevant bare coupling  $\beta_F \simeq 12/g_0^2$ 

 $\gamma_{
m eff}$  increasing with  $\lambda~\sim~$  "backward flow" at strong coupling

# $\gamma_m^{\star}(\lambda)$ from eigenmodes for $N_F = 12$

Extrapolate  $\lim_{\lambda \to 0} \gamma_{\text{eff}}(\lambda) = \gamma_m^{\star}$  at conformal IR fixed point



Single fit for some range of  $\lambda > 0$  would give precise result

but generally **not**  $\gamma_m^{\star}$  at the  $\lambda \rightarrow 0$  IR fixed point

## Wilson RG picture of finite-size scaling

Fermion mass *m* is relevant coupling; gauge coupling  $\beta_F$  is irrelevant

Increase m and decrease RG flow (L)

 $\longrightarrow$  same point on renormalized trajectory (RT)



Universal flow along RT

Correlation lengths depend on scaling variable  $x \equiv L m^{1/(1+\gamma_m^*)}$ 



## Naive finite-size scaling for $N_F = 12$

Correlation lengths depend on scaling variable  $x \equiv L m^{1/(1+\gamma_m^*)}$ 

 $\longrightarrow \gamma_m^{\star}$  from optimizing **curve collapse** of  $M_H L = f_H(x)$ 



Curve collapse  $\longrightarrow$  non-universal  $\gamma_m^{\star}$  from different observables

Conformality requires universal  $\gamma^*$ 

 $\longrightarrow$  corrections to scaling from near-marginal gauge coupling?

# Corrections to finite-size scaling

Slowly running gauge coupling  $\longrightarrow$  RG flow may not reach RT  $\longrightarrow$  non-universal results from curve collapse



Leading correction to scaling:  $M_H L = f_H(x, gm^{\omega})$ where  $\omega = -\gamma_g^*/(1 + \gamma_m^*)$ Two-loop  $\overline{\mathrm{MS}}$ : small  $\omega \approx 0.2$ 

Hard to extract both  $\gamma_m^{\star}$  and  $\gamma_g^{\star}$  from curve collapse analyses  $\longrightarrow$  simplify  $f_H(x, gm^{\omega}) \approx f_H(x) \left[1 + c_g m^{\omega}\right]$ 

#### Consistent corrected finite-size scaling for $N_F = 12$

Approximate  $M_H L \approx f_H(x) \left[1 + c_g m^{\omega}\right]$ 

 $\longrightarrow$  consistent  $\gamma_m^{\star}$  from all observables and  $\beta_F$ 

Quality of curve collapse also improves



Can attempt combined analyses of multiple data sets...

#### Combined finite-size scaling analyses for $N_F = 12$

Approximate  $M_H L \approx f_H(x) \left[1 + c_g m^{\omega}\right]$ 

 $\longrightarrow$  consistent  $\gamma_{\it m}^{\star}$  from all observables and  $\beta_{\it F}$ 

Combined analyses of multiple data sets better constrain  $\gamma_m^{\star}$  and  $\gamma_q^{\star}$ 



Result from green points:  $\gamma_m^{\star} = 0.235(15)$  and  $\gamma_a^{\star} \simeq -0.5$ 

#### Baryon anomalous dim. for partial compositeness

SM fermions q couple linearly to  $\mathcal{O}_q \sim \psi \psi \psi$  of new strong dynamics

Figure omitted to avoid weird pdf problem

Large mass hierarchy  $\iff \mathcal{O}(1)$  anomalous dimensions

Example: With  $\Lambda_F = 10^{10}$  TeV,  $\mathcal{O}(\text{MeV})$  quarks need  $\gamma_3 \approx 1.75$  $\mathcal{O}(\text{GeV})$  quarks need  $\gamma_3 \approx 1.9$ 

$$ext{Compute } \gamma_{\mathcal{O}} = -rac{d\log Z_{\mathcal{O}}(\mu)}{d\log \mu},$$

 $\longrightarrow m_q \sim 
u \left(rac{ extsf{TeV}}{\Lambda_{m{ extsf{F}}}}
ight)^{4-2\gamma_3}$ 

with  $\gamma_3 = \frac{9}{2} - d[\psi\psi\psi]$ 

 $Z_{\mathcal{O}}(\mu)$  from standard lattice RI/MOM non-perturbative renormalization

#### Baryon anomalous dim. for partial compositeness

Compute  $\gamma_{\mathcal{O}} = -\frac{d \log Z_{\mathcal{O}}(\mu)}{d \log \mu}$ ,

Figure omitted to avoid weird pdf problem

 $Z_{\mathcal{O}}(\mu)$  from standard lattice RI/MOM non-perturbative renormalization



 $N_F = 10$ , 12 DWF pilot studies starting, re-using  $\beta$  function work

## Light scalars from beyond-QCD lattice calculations

All near-conformal lattice studies so far observe light singlet scalar qualitatively different from QCD



# Light scalar in 8-flavor SU(3) spectrum



Flavor-singlet scalar degenerate with pseudo-Goldstones down to lightest masses that fit into  $64^3 \times 128$  lattices

Both  $M_S$  and  $M_P$  less than half the vector mass  $M_V$ , hierarchy growing as we approach the chiral limit  $\longrightarrow$  qualitatively different from QCD

Controlled chiral extrapolations need EFT that includes scalar...

#### Vector resonance generically QCD-like



Without EFT, roughly constant ratio  $M_V/F_P \simeq 8 \implies M_V \simeq 2 \text{ TeV}/\sqrt{\xi}$ [ NB: expect  $M_P/F_P \rightarrow 0$  in chiral limit! ]

We measure  $F_V \approx F_P \sqrt{2}$  (KSRF relation, suggesting vector domin.)

Applying second KSRF relation  $g_{VPP} \approx M_V / (F_P \sqrt{2})$ 

$$\rightarrow$$
 vector width  $\Gamma_V \approx {g_{VPP}^2 M_V \over 48\pi} \simeq$  450 GeV — hard to see at LHC

#### QCD-like non-singlet scalar $a_0$ for $N_F = 8$

May be relevant for holographic approaches...



Earlier work with domain wall fermions farther from chiral limit  $\longrightarrow$  non-singlet scalar  $a_0$  heavier than vector,  $M_{a_0} \gtrsim M_V$ 

## QCD-like non-singlet scalar $a_0$ for $N_F = 12$



Staggered  $N_F = 12$  results also show  $M_{a_0} \gtrsim M_V$ 

Analyses complicated by staggered spin-flavor mixing

## Work in progress: Constraining EFT

#### There are many candidate EFTs that include PNGBs + light scalar

(linear σ model; Goldberger–Gristein–Skiba; Soto–Talavera–Tarrus; Matsuzaki–Yamawaki; Golterman–Shamir; Hansen–Langaeble–Sannino; Appelquist–Ingoldbv–Piai)

Need lattice computations of more observables to test EFTs Now computing 2  $\rightarrow$  2 elastic scattering of PNGBs & scalar, scalar form factor of PNGB

Subsequent step: Analog of  $\pi K$  scattering in mass-split system



## S parameter on the lattice

$$\mathcal{L}_{\chi} \supset \frac{\alpha_1}{2} g_1 g_2 \mathcal{B}_{\mu\nu} \operatorname{Tr} \left[ \mathcal{U}_{\tau_3} \mathcal{U}^{\dagger} \mathcal{W}^{\mu\nu} \right] \longrightarrow \gamma, Z \longrightarrow \text{new} \gamma, Z$$

Lattice vacuum polarization calculation provides  $S = -16\pi^2 \alpha_1$ 

Non-zero masses and chiral extrapolation needed to avoid sensitivity to finite lattice volume



$$S = 0.42(2)$$
 for  $N_F = 2$   
matches scaled-up QCD

Larger  $N_F \longrightarrow$  significant reduction

Extrapolation to correct zero-mass limit becomes more challenging

# Vacuum polarization from current correlator $S = 4\pi N_D \lim_{Q^2 \to 0} \frac{d}{dQ^2} \prod_{V-A} (Q^2) - \Delta S_{SM}(M_H)$

$$\gamma, Z \longrightarrow \mathbb{R}^{Q} \longrightarrow \gamma, Z$$

$$\Pi_{V-\mathcal{A}}^{\mu\nu}(Q) = Z \sum_{x} e^{iQ \cdot (x+\hat{\mu}/2)} \operatorname{Tr} \left[ \left\langle \mathcal{V}^{\mu a}(x) V^{\nu b}(0) \right\rangle - \left\langle \mathcal{A}^{\mu a}(x) \mathcal{A}^{\nu b}(0) \right\rangle \right]$$
$$\Pi^{\mu\nu}(Q) = \left( \delta^{\mu\nu} - \frac{\widehat{Q}^{\mu} \widehat{Q}^{\nu}}{\widehat{Q}^{2}} \right) \Pi(Q^{2}) - \frac{\widehat{Q}^{\mu} \widehat{Q}^{\nu}}{\widehat{Q}^{2}} \Pi^{L}(Q^{2}) \qquad \widehat{Q} = 2 \sin\left(Q/2\right)$$

• Renormalization constant Z evaluated non-perturbatively Chiral symmetry of domain wall fermions  $\implies$  Z = Z<sub>A</sub> = Z<sub>V</sub> Z = 0.85 [2f]; 0.73 [6f]; 0.70 [8f]

• Conserved currents  $\mathcal{V}$  and  $\mathcal{A}$  ensure that lattice artifacts cancel

### Composite dark matter

Many possibilities:

#### (arXiv:1604.04627)

dark baryon, dark nuclei, dark pion, dark quarkonium, dark glueball...

Example: Stealth Dark Matter (arXiv:1503.04203, arXiv:1503.04205) Deconfined charged fermions  $\longrightarrow$  relic densnity

Confined SM-singlet dark baryon  $\longrightarrow$  direct detection via form factors



For QCD-like SU(3) baryon, direct detection  $\longrightarrow M_{DM} \gtrsim 20 \text{ TeV}$ due to leading magnetic moment interaction (arXiv:1301.1693)

## A lower bound for stealth dark matter

SU(4) bosonic baryons forbid leading magnetic moment and sub-leading charge radius interactions in non-rel. EFT

EM polarizability is unavoidable — compute it on the lattice  $\longrightarrow$  lower bound on the direct detection rate

Nuclear cross section  $\propto Z^4/A^2$ , these results specific to Xenon

Uncertainties dominated by nuclear matrix element

Shaded region is complementary constraint from particle colliders



## Future plans: Colliders and gravitational waves

Other composite dark-sector states can be discovered at colliders

Additional lattice input can help predict production and decays





Confinement transition in early universe may produce gravitational waves

First-order transition  $\longrightarrow$  colliding bubbles

Lattice calculations needed to predict properties of transition

# Multi-rep finite-temperature phase diagram SU(4) gauge theory with $N_4 = 2$ fund. and $N_6 = 2$ two-index-symm.

Step towards composite Higgs model with  $N_4 = 3$  and  $N_6 = 2.5$ 



Simultaneous first-order chiral/deconfinement transitions for both reps

#### Multi-rep mesonic spectrum

#### Looks broadly consistent with large-N rescalings of QCD





Left: 
$$M_V/F_P \sim 8\sqrt{\frac{3}{4}}\frac{1}{\sqrt{2}} \approx 4.9$$

Right: Narrower vector resonance widths expected for larger N

# Recap: An exciting time for lattice gauge theory

Lattice gauge theory is a broadly applicable tool to study strongly coupled systems and BSM physics

Exploring generic features of representative systems beyond QCD

- $\beta$  functions and anomalous dimensions
- Light scalar from near-conformal dynamics
- Low-energy constants including S parameter
- Composite dark matter and more...

Thank you!

# Recap: An exciting time for lattice gauge theory

Lattice gauge theory is a broadly applicable tool to study strongly coupled systems and BSM physics

Exploring generic features of representative systems beyond QCD

- $\beta$  functions and anomalous dimensions
- Light scalar from near-conformal dynamics
- Low-energy constants including S parameter
- Composite dark matter and more...

# Thank you!



schaich@itp.unibe.ch

www.davidschaich.net

# Backup: Hybrid Monte Carlo (HMC) algorithm

Goal: Sample field configurations U with probability  $\frac{1}{Z}e^{-S[U]}$ 



HMC is Markov process based on Metropolis-Rosenbluth-Teller

 $\label{eq:Fermions} \text{Fermions} \longrightarrow \text{extensive action computation}$ 

 $\Longrightarrow$  Global updates

using fictitious molecular dynamics



Introduce fictitious "MD time"  $\tau$ 

and stochastic canonical momenta for fields

- Inexact MD evolution along trajectory in  $\tau$  $\rightarrow$  new four-dimensional field configuration
- Accept/reject test on MD discretization error

## Backup: Lattice QCD for BSM

High-precision non-perturbative QCD calculations reduce uncertainties and help resolve potential new physics

- Hadronic matrix elements & form factors for flavor physics
   Sub-percent precision for easiest observables (arXiv:1607.00299)
- Hadronic contributions to  $(g 2)_{\mu}$  (arXiv:1311.2198) Targeting ~0.1% precision for vac. pol., ~10% for light-by-light
- $m_c$ ,  $m_b$  and  $\alpha_s(m_Z)$  to ~0.1% for Higgs couplings (arXiv:1404.0319)
- High-temp. topological suscept. for axion DM (arXiv:1606.07494)
- Nucleon electric dipole moment, form factors (arXiv:1701.07792)

## Backup: $\gamma_{\text{eff}}(\lambda)$ from eigenmodes for $N_F = 8$

Fit  $\nu(\lambda) \propto \lambda^{1+\alpha}$  in small range of  $\lambda \longrightarrow 1 + \gamma_{\text{eff}}(\lambda) = \frac{4}{1 + \alpha(\lambda)}$ 



 $u(\lambda)$  computed stochastically

Include fit ranges in error bands

Multiple *L*<sup>4</sup> volumes overlaid, *L*-sensitive data dropped

All systems have  $\rho(0) = 0$ 

Appears to evolve slowly across wide range of scales, qualitatively different from  $N_F = 12$  and QCD-like  $N_F = 4$  Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn

Bern DS

Backup:

Boston Rich Brower, Claudio Rebbi, Evan Weinberg

Colorado Anna Hasenfratz, Ethan Neil, Oliver Witzel

UC Davis Joseph Kiskis

Livermore Pavlos Vranas

Oregon Graham Kribs

**RBRC** Enrico Rinaldi

Yale Thomas Appelquist, George Fleming, Andrew Gasbarro

Exploring the range of possible phenomena

in strongly coupled gauge theories

#### Backup: 8-flavor SU(3) infrared dynamics



- β function monotonic up to fairly strong g<sup>2</sup> ~ 14
   No sign of approach towards conformal IR fixed point [β(g<sup>2</sup><sub>⋆</sub>) = 0]
- Ratio M<sub>V</sub>/M<sub>P</sub> increases monotonically as masses decrease as expected for spontaneous chiral symmetry breaking (S<sub>χ</sub>SB) Mass-deformed conformal hyperscaling predicts constant ratio

 $\begin{array}{l} \mbox{Strengthen conclusion by matching to low-energy EFT} \\ \longrightarrow \mbox{must go beyond QCD-like } \chi \mbox{PT to include light scalar}... \\ \end{array}$ 

#### Backup: Technical challenge for scalar on lattice

Only new strong sector included in the lattice calculations  $\implies$  flavor-singlet scalar mixes with the vacuum

Leads to noisy data and relatively large uncertainties



Fermion propagator computation relatively expensive

"Disconnected diagrams" formally need propagators at all L<sup>4</sup> sites

In practice estimate stochastically to control computational costs

## Backup: Isosinglet scalar in QCD spectrum



Lattice QCD  $\longrightarrow$  isosinglet scalar much heavier than pion Generally  $M_S \gtrsim 2M_P \longrightarrow M_S > M_V$  for heavy quarks

For a large range of quark masses *m* it mixes significantly with two-pion scattering states

## Backup: Qualitative picture of light scalar

Light scalar likely related to near-conformal dynamics

 $\rightarrow$  possibly dilaton, PNGB of approximate scale symmetry?



#### Backup: $2 \rightarrow 2$ elastic scattering on the lattice

Measure both 
$$E_{PP}$$
 and  $M_P \longrightarrow k = \sqrt{(E_{PP}/2)^2 - M_P^2}$ 

s-wave scattering phase shift: 
$$\cot \delta_0(k) = \frac{1}{\pi kL} S\left(\frac{k^2 L^2}{4\pi}\right)$$
  
with regularized  $\zeta$  function  $S(\eta) = \sum_{j\neq 0}^{\Lambda} \frac{1}{j^2 - \eta} - 4\pi\Lambda$ 

Effective range expansion:

$$\frac{k \cot \delta_0(k)}{a_{PP}} = \frac{1}{a_{PP}} + \frac{1}{2} M_P^2 r_{PP} \left(\frac{k^2}{M_P^2}\right) + \mathcal{O}\left(\frac{k^4}{M_P^4}\right)$$

#### Backup: Initial $2 \rightarrow 2$ elastic scattering results



First looking at analog of QCD  $\pi\pi$  scattering in I = 2 channel (simplest case with no fermion-line-disconnected diagrams)

Simplest observable is scattering length  $a_{PP} \approx 1/(k \cot \delta)$ 

 $M_P a_{PP}$  vs.  $M_P^2/F_P^2$  curiously close to leading-order  $\chi$ PT prediction

Dividing by fermion mass *m* reveals expected tension with  $\chi$ PT which predicts  $M_P a_{PP}/m = \text{const.}$  at LO and involves 8 LECs at NLO

# Backup: 8f chiral perturbation theory ( $\chi$ PT) fits



In addition to omitting the light scalar

 $\chi {\rm PT}$  also suffers from large expansion parameter

$$5.8 \le \frac{2N_FBm}{16\pi^2 F^2} \le 41.3$$
 for  $0.00125 \le m \le 0.00889$ 

Big ( $\sim$ 50 $\sigma$ ) shift in *F* from linear extrapolation vs. NLO  $\chi$ PT Fit quality is not good, especially for NLO joint fit with  $\chi^2$ /d.o.f. > 10<sup>4</sup>

#### Backup: NLO chiral perturbation theory formulas

$$M_{P}^{2} = 2Bm \left[ 1 + \frac{2N_{F}Bm}{16\pi^{2}F^{2}} \left\{ 128\pi^{2} \left( 2L_{6}^{r} - L_{4}^{r} + \frac{2L_{8}^{r} - L_{5}^{r}}{N_{F}} \right) + \frac{\log\left(2Bm/\mu^{2}\right)}{N_{F}^{2}} \right\} \right]$$

$$F_{P} = F\left[1 + \frac{2N_{F}Bm}{16\pi^{2}F^{2}}\left\{64\pi^{2}\left(L_{4}^{r} + \frac{L_{5}^{r}}{N_{F}}\right) - \frac{1}{2}\log(2Bm/\mu^{2})\right\}\right]$$

$$\begin{split} M_{P}a_{PP} &= \frac{-2Bm}{16\pi F^{2}}\left[1 + \frac{2N_{F}Bm}{16\pi^{2}F^{2}}\left\{-256\pi^{2}\left(\left[1 - \frac{2}{N_{F}}\right](L_{4}^{r} - L_{6}^{r})\right.\right.\right.\\ &\left. + \frac{L_{0}^{r} + 2L_{1}^{r} + 2L_{2}^{r} + L_{3}^{r}}{N_{F}}\right) - 2\frac{N_{F} - 1}{N_{F}^{3}} \\ &\left. + \frac{2 - N_{F} + 2N_{F}^{2} + N_{F}^{3}}{N_{F}^{3}}\log\left(2Bm/\mu^{2}\right)\right\}\right] \end{split}$$

## Backup: Thermal freeze-out for relic density



thermal relic could be just part of total relic density

#### Backup: Two roads to natural asymmetric dark matter

Idea: Dark matter relic density related to baryon asymmetry

 $\Omega_D pprox 5\Omega_B \ \Longrightarrow M_D n_D pprox 5 M_B n_B$ 

- $n_D \sim n_B \implies M_D \sim 5M_B \approx 5 \text{ GeV}$ High-dim. interactions relate baryon# and DM# violation
- $M_D \gg M_B \implies n_B \gg n_D \sim \exp[-M_D/T_s]$   $T_s \sim 200 \text{ GeV}$ EW sphaleron processes above  $T_s$  distribute asymmetries

Both require coupling between ordinary matter and dark matter

# Backup: Composite dark matter interactions

#### Photon exchange via electromagnetic form factors

Interactions suppressed by powers of confinement scale  $\Lambda \sim M_{DM}$ 

- **Dimension 5:** Magnetic moment  $\longrightarrow (\overline{\psi}\sigma^{\mu\nu}\psi) F_{\mu\nu}/\Lambda$
- **Dimension 6:** Charge radius  $\longrightarrow (\overline{\psi}\psi) v_{\mu}\partial_{\nu}F_{\mu\nu}/\Lambda^2$
- **Dimension 7:** Polarizability  $\longrightarrow (\overline{\psi}\psi) F^{\mu\nu}F_{\mu\nu}/\Lambda^3$

#### Higgs exchange via scalar form factors

Effective Higgs interaction of composite DM needed for correct Big Bang nucleosynthesis



Higgs couples through  $\langle B | m_{\psi} \overline{\psi} \psi | B \rangle$  ( $\sigma$  terms)

All form factors arise non-perturbatively  $\implies$  lattice calculations

#### Backup: SU(3) direct detection constraints

Solid lines are predictions for total number of events XENON100 would observe for SU(3) model with dark baryon mass  $M_B$ 

Dashed lines are subleading charge radius contribution suppressed  $\sim 1/M_B^2$  relative to magnetic moment contribution



#### Backup: Stealth dark matter model details



Mass terms 
$$\sim m_V \left(F_1F_2 + F_3F_4\right) + y \left(F_1 \cdot HF_4 + F_2 \cdot H^{\dagger}F_3\right) + \text{h.c.}$$

Both vector-like masses  $m_V$  and Higgs couplings y are **required** 

- Higgs couplings ensure rapid meson decay in early universe
- Vector-like masses avoid bounds

on direct detection via Higgs exchange

# Backup: Effective Higgs interaction

#### With $M_H = 125$ GeV, Higgs exchange may dominate spin-independent direct detection cross section

$$\sigma_{H}^{(SI)} \propto \left| rac{\mu_{B,N}}{M_{H}^{2}} y_{\psi} \langle B \left| \overline{\psi} \psi \right| B 
angle y_{q} \langle N \left| \overline{q} q \right| N 
angle 
ight|^{2}$$



For quarks 
$$y_q = \frac{m_q}{v} \Longrightarrow y_q \langle N | \overline{q}q | N \rangle \propto \frac{M_N}{v} \frac{\langle N | m_q \overline{q}q | N \rangle}{M_N}$$
  
For dark constituent fermions  $\psi$ 

there is an additional model parameter,  $y_q = \alpha \frac{m_{\psi}}{v}$ 

In both cases the scalar form factor is most easily determined using the Feynman–Hellmann theorem  $\frac{\langle B | m_{\psi} \overline{\psi} \psi | B \rangle}{M_B} = \frac{m_{\psi}}{M_B} \frac{\partial M_B}{\partial m_{\psi}}$ 

## Backup: Stealth dark matter EM form factors

Lightest SU(4) composite dark baryon

Scalar particle  $\longrightarrow$  no magnetic moment

+/- charge symmetry  $\longrightarrow$  no charge radius

Higgs exchange can be negligibly small



Polarizability places lower bound on direct-detection cross section Compute on lattice as dependence of  $M_{DM}$  on external field  $\mathcal{E}$ 



#### Backup: Stealth dark matter mass scales

Lattice calculations have focused on  $m_{\psi} \simeq \Lambda_D$ ,

the regime where analytic estimates are least reliable



#### Backup: Stealth dark matter collider detection



Very little missing  $E_T$  at colliders

Main constraints from much lighter **charged** "Π" states





Rapid  $\Pi$  decays with  $\Gamma \propto m_f^2$ 

Best current constraints recast stau searches at LEP

LHC can also search for  $t\overline{b} + \overline{t}b$ from  $\Pi^+\Pi^-$  Drell–Yan production

#### Backup: Philosophy of mixed-mass approach

 $N_F = N_\ell + N_h$  fermions, light  $m_\ell o 0$  at fixed  $m_h > 0$ 

Allows large  $N_F$  for approximate conformality without introducing extra Goldstones

Reducing  $m_h$  extends the range of scales over which theory is governed by conformal fixed point

