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Underlying composite Higgs dynamics

Barring extra space-time dimensions

⇒ Simplest, well-understood, explicit realization provided by gauge theory of
fermions that con�nes at the multi-TeV scale Λ

Matter content

EW sector (Higgs as pNGB) + coloured sector (top partners)

Minimal model [Barnard et al, '13]

I EW sector: 4 Weyl fermions ψ in pseudoreal irreps of hypercolour

⇒ SU(4)/Sp(4) pattern of symmetry breaking (ψ ∼ Sp(2N))

I Coloured sector: 6 Weyl fermions X in real irreps

⇒ SU(6)/SO(6) (X ∼ Sp(2N))

Explicit breaking sources

Need to destabilise Higgs potential to break EW symmetry:

I Gauging → can not destabilises Higgs potential

I Partial compositeness I Current masses: mψ,X
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E�ective approaches

Full gauge theory (hypergluons, hyperfermions as d.o.f) hard to study below Λ
because of its non-perturbative nature ⇒ E�ective models are useful

I Chiral Lagrangians: dictated only by global symmetries

LχPT =
F2

G
4
〈(DµU)†DµU〉 U = exp(2iG ÂT Â/FG )Σε

⇒ Little information on the details of the strong dynamics

⇒ Not sure that an UV completion exists [e.g. SO(5)/SO(4)]

I 4-fermion interactions (gauge bosons froze-out)

LNJL = (ΨΓαΨ)(ΨΓαΨ) [Nambu and Jona-Lasinio '61]

⇒ De�nite UV completion and underlying gauge symmetry respected

⇒ Possible to compute non-perturbative quantities (like LECs) with
NJL techniques

⇒ Estimation of the composite resonances masses (mesons and baryons)
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The framework

gauge theory 
    (fundamental fermions, techni-gluons)

          Intermediate scale effective models
      (fermionic bilinears)

    Low scale effective models
  (Goldstone bosons, ...)

Λ

f

NJL techniques  
(Large N),  ...

Chiral perturbation 
theory

Exact results on the 
strong dynamics exist 
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Four-fermion interactions

NJL approx of strong dynamics: 'froze out' hypergluons induce 4-fermion interactions

Scalar 4-fermion operators

Relevant for the spontaneous breaking and spin 0 mesons masses:

Lψscal = κA
2N

(ψaψb)(ψa ψb) + κB
8N

[
εabcd (ψaψb)(ψcψd ) + h.c.

]
I κA,B ∼ 1/Λ2 real, dimensionful couplings

I κA controls spontaneous symmetry breaking SU(4)→ Sp(4)

I κB explicitly breaks the anomalous U(1)ψ symmetry

Vector and axial-vector 4-fermion operators

Lψvect =
κC

2N

(
ψT 0

ψ σ
µψ
)2

+
κD

2N

(
ψTAσµψ

)2
+
κD

2N

(
ψT Â σµψ

)2
⇒ Non-tachyonic masses for κC ,D > 0 (consistent with current-current hypothesis)

⇒ Additional spin 1 resonances associated to (ψaσµνψb) ∼ 10Sp(4) do not
appear at the level of four-fermion interactions
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Fermionic bilinears

Hypercolour

fermions

Spin-zero

bilinears

Spin-one

bilinears

Colour Flavour

Hypercolour-invariant fermionic bilinears have the quantum numbers of the
meson resonances

Lightest composite meson resonances

Scalars: σ + S Â ∼ 1 + 5 Pseudo-scalars: η′ + G Â ∼ 1 + 5

Vectors: V A
µ ∼ 10 Axial-vector: aµ + AÂ

µ ∼ 1 + 5
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Mass gap from four-fermion interactions

Lagrangian can be rewritten in the `physical' channels, corresponding to
de�nite Sp(4) representations using SU(4) Fierz identities:

Lψscal = 2
κA

(2N)

[(
ψΣ0T

0
ψψ
) (
ψT 0

ψΣ0ψ
)

+
(
ψΣ0T

Âψ
)(

ψT ÂΣ0ψ
)]

+
κB

(2N)

[(
ψΣ0T

0
ψψ
) (
ψΣ0T

0
ψψ
)
−
(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ
)

+ h.c.
]

Schwinger Dyson equation determines dynamical fermion mass Mψ

= +

ψ ψ

2κA

(2N)
2κB

(2N)

ψ ψ ψ ψ ψ ψ

Mψ = 4(κA + κB )MψÃ0(M2
ψ)

Self-consistence implicitly ressums all diagrams leading in 1/N

ξ ≡
Λ2(κA + κB )

4π2
=

[
1−

M2
ψ

Λ2
ln

(
Λ2+M2

ψ

M2
ψ

)]−1
critical
coupling

1 < ξ . 3.25
maximal
coupling

I Non trivial solution Mψ 6= 0 (SU(4)
spontaneously broken) exists only if ξ > 1

I Consistent resummation: 0 < Mψ/Λ . 1
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The Goldstone decay constant f

〈vac|J Â
µ (0)|G B̂ (p)〉 = ipµ

f√
2
δÂB̂ EW precision observables receive order

v2/f 2 corrections ⇒ f & 0.5− 1 TeV

f 2

2
= lim

q2→0
[−q2ΠA(q2)] =

Π̃A(0)

1 + 2κD Π̃A(0)/N
, Π̃A(0) = −2(2N)M2

ψB̃0(0,M2
ψ)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4
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0.8

1.0

Ξ

fHN=2L

fHN=18L

L

MΨ

I f residue of the
Goldstone boson pole in
the resummed transverse
axial correlator

I f sets the scale of the
composite sector

I f ∝
√
N

I f can be as small as
Λ/10 (Λ ≡ NJL cuto�)

⇒ possibly large hierarchy
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The spectrum of mesons

Bethe-Salpether equation

Resummation (geometrical series) of an in�nite number of constituent fermion
loops at leading order in 1/N ⇒ Two-point correlators develop a pole

= + · · ·φ φ + + φφ φφφφ Kφ KφKφ

The pole de�nes the meson mass Mφ

Πφ(q2) =
Π̃φ(q2)

1− 2KφΠ̃φ(q2)
−→ 1− 2KφΠ̃φ(q2 = M2

φ) = 0

and similarly for the spin one channels V and A
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The spectrum of mesons

No con�nement in the NJL ⇒ Prescription for the unphysical imaginary parts

1− 2KφΠ̃φ(q2) = cφ0 (q2) + cφ1 (q2)q2 −→ M2
φ = Re

[
−
cφ0 (M2

φ)

cφ1 (M2
φ)

]
Kφ ≡ four-fermion couplings Π̃φ(q2) ≡ Polarisation amplitudes

I Inserting the gap-equation, one recovers consistently the Goldstone pole: MG = 0

I Singlet pseudo-scalar proportional to U(1)
anomaly and mixes with axial vector:

M2
η′ = −

κB

κ2A − κ
2
B

[1− 2KaΠ̃L
A(M2

η′ )]

B̃0(M2
η′ ,M2

ψ)

I Scalars proportional to
the mass gap Mψ:

M2
σ = 4M2

ψ, M2
S = 4M2

ψ + M2
η′

B̃0(M2
η′ ,M2

ψ)

B̃0(M2
S ,M2

ψ)
' M2

σ + M2
η′

I Vector heavy even for
vanishing mass gap:

M2
V =

−3
4κD B̃0(M2

V ,M2
ψ)

+ 2M2
ψ

B̃0(0,M2
ψ)

B̃0(M2
V ,M2

ψ)
− 2M2

ψ

I Axial-vector generally
the heaviest:

M2
A =

−3
4κD B̃0(M2

A ,M2
ψ)

+ 2M2
ψ

B̃0(0,M2
ψ)

B̃0(MV A2,M2
ψ)

+ 4M2
ψ ' M2

V + 6M2
ψ
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EW meson masses in units of f (f & 0.5− 1 TeV)

Current-current hypothesis

I Large-N relation among 4-fermion operators dominated by single hypergluon
exchange → κA = κC = κD (Ma = MA)

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Ξ

M
�
f

Κ � Κ =0.1B AL

MΗ '

MV

MA
MΣMS I Mφ/f ∼ 1/

√
N

(N = 4 here)

I Free parameters:

ξ = Λ2(κA + κB )/(4π2)
κB/κA

I EW splitting neglected
(e.g. 5Sp(4) = 2±1/210)

⇒ Full Sp(4) multiplets

I Consistently recover
NGBs: MG = 0
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NJL estimation of S parameter

S parameter

Need only to assume vev for the Higgs (No need to explicitly consider details of

breaking terms)

∆S = 16π
dΠ

(v)
3Y

(q2)

dq2

∣∣∣∣
q2=0

= 8π v2

f 2
d

dq2

(
q2ΠV -A(q2)

)∣∣∣
q2=0

, v
f

= sin
(
〈h〉

f

)
Correlator ΠV -A(q2) can be estimated in the NJL approximation

1.0 1.5 2.0 2.5 3.0
0.00

0.05
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Ξ

D
S

N
J
L

Κ � Κ =0.1
Κ � Κ =0.5

B A

B A

f=0.5 TeV

f=0.75 TeV

f=1 TeV

S H3ΣL

S best fit

N=4

3σ limit assumes
∆T = 0

∆S decreases when
strong sector
decouples (ie
increase of f )

No corresponding
shift in T parameter
due to custodial
symmetry
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S-T ellipse

IR contributions

Composite sector also modi�es Higgs couplings to EW gauge bosons by factor√
1− v2/f 2

∆SIR = 1
6π

v2

f 2
ln
(
µ

Mh

)
, ∆TIR = − 3

8π
1

cos2 θW

v2

f 2
ln
(
µ

Mh

)
= − 9

4
∆SIR

cos2 θW

ø

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-0.4

-0.2

0.0

0.2

0.4

S

T

0.5 TeV

0.75 TeV

1 TeV

Ξ =1.3
Ξ =2

One expects
additional
contributions from
partial
compositeness
⇒ Not complete
prediction, only
shown is speci�c
contributions
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Adding the coloured sector

Introduce new constituent coloured fermions X f to form spin-1/2 baryons
mixing with SM top quark

⇒ Need to go beyond Sp(2N) fundamental representation: X f ∼ (N > 2)

Minimal cases: I Sp(2) ∼= SU(2) (EW sector alone) → lattice results available
I Sp(4) ∼= SO(5) (EW+ coloured sectors)

Lightest coloured resonances

Scalars: σX + S F̂
c ∼ 1 + 20′

Pseudo-scalars: ηX + G F̂
c ∼ 1 + 20′

Vectors: V µF
c ∼ 15

Axial-vector: aµc + AµF̂
c ∼ 1 + 20′

20′
SO(6)

= (8 + 6 + 6)SU(3)c
15SO(6) = (1 + 8 + 3 + 3)SU(3)c
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U(1) (anomalous) symmetries

Lot of changes appears when theory includes both EW and coloured sectors

I Important to consider global fermion numbers U(1)ψ and U(1)X

I Currents J 0
µψ,X both anomalous w.r.t Sp(2N) (like U(1)A in QCD)

I However, one linear combination is anomaly free and thus conserved:
J 0
µ = J 0

µX − 3(N − 1)J 0
µψ

⇒ New Goldstone boson η0 appears while η′ receive a mass from the anomaly

Construct the minimal operator that preserves all exact symmetries but
explicitly breaks the anomalous U(1) (generalisation of κB -term)

I EW sector: Sp(2N) anomaly breaks U(1)ψ → Oψ = −1

4
εabcd (ψaψb)(ψcψd )

I Colour sector: anomaly breaks U(1)X → OX = −
1

6!
εf1···f6εg1···g6 (X f1X g1 ) · · · (X f6X g6 )

I Full theory preserves U(1)X−3(N−1)ψ: → LψX = AψX
Oψ

(2N)2

[
OX

[(2N + 1)(N − 1)]6

](N−1)

After spontaneous breaking LψX generates e�ective 4-fermion operators ψ4,
X 4 and ψ2X 2
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Mass gap equations

Two coupled mass gap equations:{
Mψ = 4

[
κA + κB (M2

X )
]
MψÃ0(M2

ψ)

MX = 4
[
κA6 + κB6(M2

ψ,M
2
X )
]
MX Ã0(M2

X ) + mX

{
κB = κB6 = 0
κA = κA6,mX = 0
⇒ Mψ = MX

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

L

MΨ
KA6=2kA

kA6=kA� 2

mX=L�10

ΚB� ΚA=0.1

I Coloured sector window
[between critical coupling

(MX = 0) and maximal

coupling (MX = Λ)] shifts
respect to the EW sector
window

I mX 6= 0: No critical
coupling as MX > mX

= +
κA

· · ·
ψ ψ ψ ψ ψ ψ

ψ ψ

X X

AψX
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Coloured meson masses

Current-current hypothesis

The ratio EW masses/ coloured masses strongly depends on the ratio κA6/κA

Unfortunately the large-N approximation does not determine this ratio uniquely
(but still determines κA6 = κC6 = κD6)
⇒ Choose κA = κA6

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Ξ

M
�
f

m =0XL

MG

MV

MA c

c

MSc

c

I Mφ/f ∼ 1/
√
N

(N = 4, κB/κA = 1/100
here)

I Goldstone bosons
receive a mass from
gluon loops that evade
bounds for f & 1 TeV

I Goldstone (and
coloured resonances)
mass increase with f
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Singlet meson masses with mixing

(Pseudo-)scalars: Anomalous operator AψX induces a coupling ψ2X 2 of the

same order as the couplings ψ4, X 4

⇒ One linear combination of η0 is a pNGB (massless for mX = 0)

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Ξ

M
�
f

m =f� 10XL

MΗ '

MΣ '

MΗ0

MΣ0

I pNGB η0 could be very light
⇒ M2

η0 ∼ mX

I Anomalous pseudoscalar η′

could also be very light
⇒ M2

η0 ∼ AψX

(No way to estimate AψX )
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Motivations

Calculation of top partners masses within NJL framework [work in progress]

⇒ Possibility to have light top partners for PC?
⇒ Relevant for more phenomenological approaches where mixing with top
partners is included, e.g. if t′ ∼ (5 + 1)Sp(4)

I NJL allows to estimate VL masses M1 and M5 and similarly for other
embedding or models
⇒ What is the more intersting top partner? the most favorable one?

I Allows to discriminate di�erent scenarios: gives an idea if M1 ' M5,
M1 > M5 or M1 < M5
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NJL computationo of baryon masses

I Identify baryons (ψψX ), · · · ⇒ Lorentz, hypercolour and �avour contractions

I Approximate trilinear baryons as diquark-quark system:

⇒ Compute diquarks masses with same techniques employed for mesons

I Static approximation: Neglect kinetic term of the exchange fermions

⇒ pinch diagrams to get fermi interactions between 2 diquarks and 2 fermions
⇒ Couplings of diquarks should also be extracted from the NJL ressumation

I Resum the geometrical series with loops of constituent fermions and diquark:

⇒ Loops involve two masses

⇒ Only diquarks bound states

(Md < 2Mf ) contribute to baryon mass

Nicolas Bizot (IPNL-Lyon)Analysis of the spectrum of composite resonances 21 / 23



Summary

Thorough analysis of the spectrum of meson (and baryons) resonances in a
con�ning gauge theory with fermions in two di�erent hypercolour
representations

I NJL well describes SSB: non-perturbative computation of Mψ,X and f
⇒ f can be as small as Λ/10 → large hierarchy could explain that no new

states have been observed so far at LHC

I Computation of the composite meson masses (consistent with lattice results)

⇒ spectrum belong to multi-TeV range but few states can be relatively light

• EW and coloured pNGBs including η0
• η′ for small κB/κA

• σ for small ξ

I Only few parameters (ξ, κA6/κA, κB/κA, N, mX ) if current-current
hypothesis is assumed ⇒ Phenomenologically simple

Main limitation: absence of interactions with SM fermion �elds
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Outlooks

I Baryon masses could be used as input parameters for more e�ective
approaches where mixing with light top partners is explicitly included
⇒ Exotic decays of VLQs could signi�cantly a�ect experimental bounds

• T → η0t with large branching ratio

• T̃5 → ηt withBr = 1 [1712.XXXXX, Bizot, Caciapaglia, Flacke]

• X5/3 → πc
6t, · · ·

I Consider other UV completions
⇒ f ∼ N imply lighter composite resonances

I Apply NJL to minimal fundamental partial compositeness
⇒ B = (Sψ): easy to compute top partners masses [Sanino, Strumia, Tesi, '16]

I Other applications of NJL techniques to composite (Higgs) models?
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Thanks for your attention!
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Current-current hypthesis

Four-fermions operators couplings may be related
⇒ Prediction of relative strength between the various physical channels (works
well in QCD)

I Start from Sp(2N) current-current operators: encode UV dynamics in
`ladder' approximation, that holds when N is (moderately) large

I Use Fierz transformations to generate various operators

LUV = gHCJ µI
ψ GµI J µI

ψ = ψ
(

ΩT I
)
σµψ

Assume that con�ning strong dynamics can be described (1rst approximation)
by exchange of one hypergluon which acquired a dynamical mass
⇒ 'Ladder' approximation strong dynamics generates Sp(2N) current-current
operators

Leff =
κUV

2N
J µI
ψ J

I
ψµ κUV /(2N) ∼ g2

HC/Λ2 (gHC ∼ 1/
√
2N)

Lorentz and SU(N) for the fundamental (�avour) Fierz transformations are very
well-known but not Sp(2N) that we derived
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Current-current hypthesis

Four-fermions operators couplings may be related
⇒ Prediction of relative strength between the various physical channels (works
well in QCD)

I Start from Sp(2N) current-current operators: encode UV dynamics in
`ladder' approximation, that holds when N is (moderately) large

I Use Fierz transformations to generate various operators

Sp(2N) Fierz matrix for the fundamental representation:


(ΩT 0)ij (ΩT 0)kl∑
I

(ΩT I )ij (ΩT I )kl∑̂
I

(ΩT Î )ij (ΩT Î )kl

 =


1
2N

1
2N

1
2N

2N+1
2

− 1
2

1
2

(2N+1)(N−1)
2N

N−1
2N

−N+1
2N




(ΩT 0)il (ΩT 0)kj∑
I

(ΩT I )il (ΩT I )kj∑̂
I

(ΩT Î )il (ΩT Î )kj

 ,
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The fate of the SU(4) symmetry

I The model is a vector-like gauge theory: all fermions ψ can be made massive
(mψψψ), while preserving the gauge hypercolour symmetry Gc = Sp(2N)

Three cases in vector-like theories: [Peskin, '80]

I G = SU(Nf )L × SU(Nf )R and Hm = SU(Nf )V (complex rep. of G)

I G = SU(2Nf ) and Hm = SO(2Nf ) (real rep.)
Hm = Sp(2Nf ) (pseudo-real rep.)

I Vafa-Witten theorem: The �avour subgroup H of G preserved by mψ can
not be spontaneously broken ⇒ If SU(4) broken, it is broken down to Sp(4)

I 't Hooft anomaly matching:
Any global UV anomaly (generated by the hyperfermions ψ) must be matched
in the IR, either by massless spin-1/2 baryons or Goldstone boson

ψ's can not form baryons because they are in pseudo-real hypercolour irreps
⇒ SU(4) unavoidably spontaneously broken

dABĈ = 2Tr [{T A,T B}T Ĉ ]

SU(4) broken (T Â) and unbroken (T A)
generators combine in non-zero anomaly
coe�cients ⇒ Global anomalies

(ψaψb) ≡ ψa
i Ωijψ

b
j

The unique invariant tensor of Sp(2N) is
two-index antisymmetric
⇒ SU(4)-�avour contraction also antisymmetric
(4× 4 = 6A + 10S )
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The fate of SU(4)× SU(6)× U(1)

Trilinear baryons: Ψabf = (ψaψbX f ), Ψab
f = (ψaψbX f ) Ψaf

b = (ψaψbX
f )

Ψfgh = (X f X gX h), Ψfg
h = (X f X gX h)

Anomaly matching condition:∑
i=ψ,X

niA(ri ) =
∑

i=baryon

ni′A(ri ), 2Tr [T Â
r {TB

r ,T
C
r }] = A(r)d ÂBC

I SU(4)3: Matching impossible for N 6= 8n ⇒ SU(4) breaks to Sp(4) and one
expects non-zero condensate 〈ψψ〉 6= 0

I SU(6)3: Matching always possible ⇒ SU(6) may not break to SO(6) and
the condensate 〈XX 〉 may vanish or not

I SU(4)2 × U(1), SU(6)2 × U(1),U(1)3: U(1) most likely broken by 〈ψψ〉

or=

JA
µ

JB
ν

JC
ρ
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Radiative contributions to the coloured pNGBs

Gauging explictly breaks G and induce radiative mass to NGBs:

∆M2
G

Â
= − 3

4π

1

F 2
G

g2
W
4π
×
∫ ∞
0

dQ2 Q2 ΠV -A(−Q2)×

∑
B̂

(
f ÂW B̂

)2
−
∑

B

(
f ÂŴ B

)2
f abc = 2iTr(T a[T b,T c ])

TW = TW + T Ŵ gauged generators, TW ,Ŵ linear combination of TA,Â

As GSM ⊂ H → f ÂŴ B = 0(T Ŵ = 0) ⇒ Always positive contributionin CHMs
that can not break EW symmetry

Coloured pNGBs masses

Coloured pNGBs receive mass from gluon loops:

Octet : ∆M2
Oc

= − 3

4π

1

F 2
Gc

∫ ∞
0

dQ2 Q2 ΠX
V -A(−Q2)× 3

4π
g2

s

Sextet : ∆M2
Sc

= − 3

4π

1

F 2
Gc

∫ ∞
0

dQ2 Q2 ΠX
V -A(−Q2)× 1

4π

(
10

3
g2

s +
16

9
g ′2
)

⇒ Enough to comply with direct searches even for f = 1 TeV
(and even for mX = 0 contarry to the common expectation)
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