Analysis of the spectrum of composite resonances

Nicolas Bizot (IPNL-Lyon)

based on arXiV: 1610.09293 [Phys.Rev. D95 (2017)] with M. Frigerio, M. Knecht and J.-L. Kneur

Montpellier workshop on strong dynamics at the EW scale 7 December 2017

Barring extra space-time dimensions

 \Rightarrow Simplest, well-understood, explicit realization provided by gauge theory of fermions that confines at the multi-TeV scale Λ

Matter content

EW sector (Higgs as pNGB) + coloured sector (top partners)

Minimal model [Barnard et al, '13]

▶ <u>EW sector</u>: 4 Weyl fermions ψ in pseudoreal irreps of hypercolour ⇒ SU(4)/Sp(4) pattern of symmetry breaking $(\psi \sim \Box_{Sp(2N)})$

► <u>Coloured sector</u>: 6 Weyl fermions X in real irreps $\Rightarrow SU(6)/SO(6) (X \sim \Box_{Sp(2N)})$

Explicit breaking sources

Need to destabilise Higgs potential to break EW symmetry:

- \blacktriangleright Gauging \rightarrow can not destabilises Higgs potential
- ► Partial compositeness

Current masses: $m_{\psi,X}$

Full gauge theory (hypergluons, hyperfermions as d.o.f) hard to study below Λ because of its non-perturbative nature \Rightarrow Effective models are useful

Chiral Lagrangians: dictated only by global symmetries

$$\mathcal{L}_{\chi PT} = \frac{F_{G}^{2}}{4} \langle (D_{\mu}U)^{\dagger}D^{\mu}U \rangle \qquad U = \exp(2iG^{\hat{A}}T^{\hat{A}}/F_{G})\Sigma_{\epsilon}$$

 \Rightarrow Little information on the details of the strong dynamics

 \Rightarrow Not sure that an UV completion exists [e.g. SO(5)/SO(4)]

<u>4-fermion interactions</u> (gauge bosons froze-out)

 $\mathcal{L}_{NJL} = (\overline{\Psi} \Gamma^{\alpha} \Psi) (\overline{\Psi} \Gamma_{\alpha} \Psi)$ [Nambu and Jona-Lasinio '61]

 \Rightarrow Definite UV completion and underlying gauge symmetry respected

- \Rightarrow Possible to compute non-perturbative quantities (like LECs) with NJL techniques
- \Rightarrow Estimation of the composite resonances masses (mesons and baryons)

1 The electroweak sector

2 The coloured sector

Baryonic sector

NJL approx of strong dynamics: 'froze out' hypergluons induce 4-fermion interactions

Scalar 4-fermion operators

Relevant for the spontaneous breaking and spin 0 mesons masses:

$$\mathcal{L}_{\textit{scal}}^{\psi} = rac{\kappa_A}{2N} (\psi^a \psi^b) (\overline{\psi}_a \ \overline{\psi}_b) + rac{\kappa_B}{8N} \left[\epsilon_{\textit{abcd}} (\psi^a \psi^b) (\psi^c \psi^d) + h.c.
ight]$$

 $ightarrow \kappa_{A,B} \sim 1/\Lambda^2$ real, dimensionful couplings

▶ κ_A controls spontaneous symmetry breaking $SU(4) \rightarrow Sp(4)$

 \blacktriangleright κ_B explicitly breaks the anomalous $U(1)_{\psi}$ symmetry

Vector and axial-vector 4-fermion operators

$$\mathcal{L}_{\text{vect}}^{\psi} = \frac{\kappa_{C}}{2N} \left(\overline{\psi} \ T_{\psi}^{0} \ \overline{\sigma}^{\mu} \psi \right)^{2} + \frac{\kappa_{D}}{2N} \left(\overline{\psi} \ T^{A} \overline{\sigma}^{\mu} \psi \right)^{2} + \frac{\kappa_{D}}{2N} \left(\overline{\psi} \ T^{\hat{A}} \overline{\sigma}^{\mu} \psi \right)^{2}$$

⇒ Non-tachyonic masses for $\kappa_{C,D} > 0$ (consistent with current-current hypothesis) ⇒ Additional spin 1 resonances associated to $(\psi^a \sigma^{\mu\nu} \psi^b) \sim 10_{Sp(4)}$ do not appear at the level of four-fermion interactions

Fermionic bilinears

			Colour Flay		our	
		Lorentz	Sp(2N)	SU(4)	Sp(4)	
Hypercolour fermions Spin-zero bilinears Spin-one bilinears	ψ^a_i	(1/2, 0)	\Box_i	4^a	4	
	$\overline{\psi}_{ai} \equiv \psi^{\dagger}_{aj} \Omega_{ji}$	(0, 1/2)	\Box_i	$\overline{4}_a$	4*	
	$M^{ab} \sim (\psi^a \psi^b)$	(0, 0)	1	6^{ab}	5 + 1	
	$\overline{M}_{ab} \sim (\overline{\psi}_a \overline{\psi}_b)$	(0,0)	1	$\overline{6}_{ab}$	5 + 1	
	$a^{\mu}\sim (\overline{\psi}_a\overline{\sigma}^{\mu}\psi^a)$	(1/2, 1/2)	1	1	1	
	$(V^{\mu}, A^{\mu})^{b}_{a} \sim (\overline{\psi}_{a} \overline{\sigma}^{\mu} \psi^{b})$	(1/2, 1/2)	1	15^a_b	10 + 5	

Hypercolour-invariant fermionic bilinears have the quantum numbers of the meson resonances

Lightest composite meson resonancesScalars: $\sigma + S^{\hat{A}} \sim 1 + 5$ Vectors: $V_{\mu}^{A} \sim 10$ Axial-vector: $a_{\mu} + A_{\mu}^{\hat{A}} \sim 1 + 5$

Mass gap from four-fermion interactions

Lagrangian can be rewritten in the 'physical' channels, corresponding to definite Sp(4) representations using SU(4) Fierz identities:

$$\mathcal{L}_{scal}^{\psi} = 2 \frac{\kappa_{A}}{(2N)} \left[\left(\psi \Sigma_{0} T_{\psi}^{0} \psi \right) \left(\overline{\psi} T_{\psi}^{0} \Sigma_{0} \overline{\psi} \right) + \left(\psi \Sigma_{0} T^{\hat{A}} \psi \right) \left(\overline{\psi} T^{\hat{A}} \Sigma_{0} \overline{\psi} \right) \right]$$

$$+ \frac{\kappa_{B}}{(2N)} \left[\left(\psi \Sigma_{0} T_{\psi}^{0} \psi \right) \left(\psi \Sigma_{0} T_{\psi}^{0} \psi \right) - \left(\psi \Sigma_{0} T^{\hat{A}} \psi \right) \left(\psi \Sigma_{0} T^{\hat{A}} \psi \right) + h.c. \right]$$

Schwinger Dyson equation determines dynamical fermion mass M_{ψ}

$$M_{\psi} = 4(\kappa_A + \kappa_B)M_{\psi}\tilde{A}_0(M_{\psi}^2)$$

Self-consistence implicitly ressums all diagrams leading in 1/N

maximal

coupling

$$\xi \equiv \frac{\Lambda^2(\kappa_A + \kappa_B)}{4\pi^2} = \left[1 - \frac{M_{\psi}^2}{\Lambda^2} \ln\left(\frac{\Lambda^2 + M_{\psi}^2}{M_{\psi}^2}\right)\right]^{-1}$$

 $1<\xi\lesssim 3.25$

critical

coupling

▶ Non trivial solution $M_{\psi} \neq 0$ (SU(4) spontaneously broken) exists only if $\xi > 1$

• Consistent resummation: $0 < M_{\psi}/\Lambda \lesssim 1$

Bethe-Salpether equation

Resummation (geometrical series) of an infinite number of constituent fermion loops at leading order in $1/N \Rightarrow$ Two-point correlators develop a pole

The pole defines the meson mass M_{ϕ}

$$\overline{\Pi}_{\phi}(q^2) = rac{\Pi_{\phi}(q^2)}{1 - 2K_{\phi}\Pi_{\phi}(q^2)} \longrightarrow 1 - 2K_{\phi}\Pi_{\phi}(q^2 = M_{\phi}^2) = 0$$

ϕ	K_{ϕ}	$ ilde{\Pi}_{\phi}(q^2)$
$G^{\hat{A}}$	$2(\kappa_A + \kappa_B)/(2N)$	$\tilde{\Pi}_{-}(a^2) = (2N) \left[\tilde{\Lambda}_{-}(M^2) - q^2 \tilde{D}_{-}(a^2 - M^2) \right]$
η'	$2(\kappa_A - \kappa_B)/(2N)$	$\Pi_{P}(q') = (2N) \left[A_0(M_{\psi}) - \frac{1}{2} B_0(q', M_{\psi}) \right]$
$S^{\hat{A}}$	$2(\kappa_A - \kappa_B)/(2N)$	$\tilde{\Pi}_{\alpha}(a^{2}) = (2N) \left[\tilde{A}_{\alpha}(M^{2}) - \frac{1}{2}(a^{2} - 4M^{2}) \tilde{B}_{\alpha}(a^{2} - M^{2}) \right]$
σ	$2(\kappa_A + \kappa_B)/(2N)$	$\Pi_S(q') = (2N) \left[\Lambda_0(M_\psi) - \frac{1}{2} (q' - 4M_\psi) D_0(q', M_\psi) \right]$

and similarly for the spin one channels V and A

Analysis of the spectrum of composite resonances

No confinement in the NJL \Rightarrow Prescription for the unphysical imaginary parts $1 - 2\mathcal{K}_{\phi}\tilde{\Pi}_{\phi}(q^2) = c_0^{\phi}(q^2) + c_1^{\phi}(q^2)q^2 \quad \longrightarrow \quad M_{\phi}^2 = Re\left[-\frac{c_0^{\phi}(M_{\phi}^2)}{c_1^{\phi}(M_{\phi}^2)}\right]$ $\tilde{\Pi}_{\phi}(q^2) \equiv \text{Polarisation amplitudes}$ $K_{\phi} \equiv$ four-fermion couplings

► Inserting the gap-equation, one recovers consistently the Goldstone pole: $M_{G} = 0$

 \blacktriangleright Singlet pseudo-scalar proportional to U(1) $M_{\eta'}^2 = -\frac{\kappa_B}{\kappa_A^2 - \kappa_B^2} \frac{\left[1 - 2K_a \tilde{\Pi}_A^L(M_{\eta'}^2)\right]}{\tilde{B}_0(M_{\pi'}^2, M_{\pi'}^2)}$ anomaly and mixes with axial vector:

► Scalars proportional to
the mass gap
$$M_{\psi}$$
:
$$M_{\sigma}^{2} = 4M_{\psi}^{2}, \quad M_{S}^{2} = 4M_{\psi}^{2} + M_{\eta'}^{2} \frac{\tilde{B}_{0}(M_{\eta'}^{2}, M_{\psi}^{2})}{\tilde{B}_{0}(M_{S}^{2}, M_{\psi}^{2})} \simeq M_{\sigma}^{2} + M_{\eta'}^{2}$$

Vector heavy even for vanishing mass gap:

the mass ga

$$M_V^2 = \frac{-3}{4\kappa_D \tilde{B}_0(M_V^2, M_\psi^2)} + 2M_\psi^2 \frac{\tilde{B}_0(0, M_\psi^2)}{\tilde{B}_0(M_V^2, M_\psi^2)} - 2M_\psi^2$$

Axial-vector generally the heaviest:

$$M_{A}^{2} = \frac{-3}{4\kappa_{D}\tilde{B}_{0}(M_{A}^{2}, M_{\psi}^{2})} + 2M_{\psi}^{2}\frac{\tilde{B}_{0}(0, M_{\psi}^{2})}{\tilde{B}_{0}(M_{V}A2, M_{\psi}^{2})} + 4M_{\psi}^{2} \simeq M_{V}^{2} + 6M_{\psi}^{2}$$

Current-current hypothesis

► Large-N relation among 4-fermion operators dominated by single hypergluon exchange $\rightarrow \kappa_A = \kappa_C = \kappa_D$ $(M_a = M_A)$

Current-current hypothesis

► Large-N relation among 4-fermion operators dominated by single hypergluon exchange $\rightarrow \kappa_A = \kappa_C = \kappa_D$ $(M_a = M_A)$

NJL estimation of S parameter

S parameter

Need only to assume vev for the Higgs (No need to explicitly consider details of breaking terms)

$$\Delta S = 16\pi \left. \frac{d\Pi_{3Y}^{(\nu)}(q^2)}{dq^2} \right|_{q^2=0} = 8\pi \frac{v^2}{f^2} \left. \frac{d}{dq^2} \left(q^2 \Pi_{V-A}(q^2) \right) \right|_{q^2=0}, \frac{v}{f} = \sin\left(\frac{\langle h \rangle}{f}\right)$$

Correlator $\Pi_{V-A}(q^2)$ can be estimated in the NJL approximation

Analysis of the spectrum of composite resonances

S-T ellipse

IR contributions

Analysis of the spectrum of composite resonances

The electroweak sector

2 The coloured sector

Baryonic sector

Introduce new constituent coloured fermions X^{f} to form spin-1/2 baryons mixing with SM top quark

 \Rightarrow Need to go beyond Sp(2N) fundamental representation: $X^{f} \sim \prod (N \ge 2)$

 $\begin{array}{l} \underline{\text{Minimal cases:}} \mathrel{\blacktriangleright} Sp(2) \cong SU(2) \text{ (EW sector alone)} \rightarrow \underline{\text{lattice results available}}\\ \mathrel{\blacktriangleright} Sp(4) \cong SO(5) \text{ (EW+ coloured sectors)} \end{array}$

	Lorentz	Sp(2N)	SU(6)	SO(6)
X_{ij}^f	(1/2, 0)	\exists_{ij}	6^{f}	6
$\overline{X}_{fij} \equiv \Omega_{ik} X_{fkl}^{\dagger} \Omega_{lj}$	(0, 1/2)	\exists_{ij}	$\overline{6}_{f}$	6
$M_c^{fg} \sim (X^f X^g)$	(0, 0)	1	21^{fg}	20' + 1
$\overline{M}_{cfg} \sim (\overline{X}_f \overline{X}_g)$	(0, 0)	1	$\overline{21}_{fg}$	20' + 1
$a_X^\mu \sim (\overline{X}^f \overline{\sigma}^\mu X_f)$	(1/2, 1/2)	1	1	1
$(V_c^{\mu}, A_c^{\mu})_f^g \sim (\overline{X}_f \overline{\sigma}^{\mu} X^g)$	(1/2, 1/2)	1	35_g^f	15 + 20'

Lightest coloured resonancesScalars: $\sigma_X + S_c^{\hat{F}} \sim 1 + 20'$ Pseudo-scalars: $\eta_X + G_c^{\hat{F}} \sim 1 + 20'$ Vectors: $V_c^{\mu F} \sim 15$ Axial-vector: $a_c^{\mu} + A_c^{\mu \hat{F}} \sim 1 + 20'$

 $20'_{SO(6)} = (8 + 6 + \overline{6})_{SU(3)_c} \qquad 15_{SO(6)} = (1 + 8 + 3 + \overline{3})_{SU(3)_c}$

U(1) (anomalous) symmetries

Lot of changes appears when theory includes both EW and coloured sectors

- lmportant to consider global fermion numbers $U(1)_{\psi}$ and $U(1)_X$
- Currents $\mathcal{J}^{0}_{\mu\psi,\chi}$ both anomalous w.r.t Sp(2N) (like $U(1)_A$ in QCD)
- ► However, one linear combination is anomaly free and thus conserved: $\mathcal{J}^0_\mu = \mathcal{J}^0_{\mu X} - 3(N-1)\mathcal{J}^0_{\mu \psi}$

 \Rightarrow New Goldstone boson η_0 appears while η' receive a mass from the anomaly

Construct the minimal operator that preserves all exact symmetries but explicitly breaks the anomalous U(1) (generalisation of κ_B -term)

▶ <u>EW sector:</u> Sp(2N) anomaly breaks $U(1)_{\psi} \rightarrow \mathcal{O}_{\psi} = -\frac{1}{4} \epsilon_{abcd} (\psi^a \psi^b) (\psi^c \psi^d)$

- $\blacktriangleright \underline{\text{Colour sector:}} \text{ anomaly breaks } U(1)_X \to \mathcal{O}_X = -\frac{1}{6!} \epsilon_{f_1 \cdots f_6} \epsilon_{g_1 \cdots g_6} (X^{f_1} X^{g_1}) \cdots (X^{f_6} X^{g_6})$
- Full theory preserves $U(1)_{X-3(N-1)\psi}$: $\rightarrow \mathcal{L}_{\psi X} = A_{\psi X} \frac{\mathcal{O}_{\psi}}{(2N)^2} \left[\frac{\mathcal{O}_X}{[(2N+1)(N-1)]^6} \right]^{(N-1)}$

After spontaneous breaking $\mathcal{L}_{\psi X}$ generates effective 4-fermion operators ψ^4 , X^4 and $\psi^2 X^2$

Two coupled mass gap equations: $\begin{cases}
M_{\psi} = 4 \left[\kappa_{A} + \kappa_{B}(M_{X}^{2}) \right] M_{\psi} \tilde{A}_{0}(M_{\psi}^{2}) \\
M_{X} = 4 \left[\kappa_{A6} + \kappa_{B6}(M_{\psi}^{2}, M_{X}^{2}) \right] M_{X} \tilde{A}_{0}(M_{X}^{2}) + m_{X}
\end{cases}$

$$\begin{cases} \kappa_B = \kappa_{B6} = 0\\ \kappa_A = \kappa_{A6}, m_X = 0\\ \Rightarrow M_{\psi} = M_X \end{cases}$$

Current-current hypothesis

The ratio EW masses/ coloured masses strongly depends on the ratio κ_{A6}/κ_A Unfortunately the large-N approximation does not determine this ratio uniquely (but still determines $\kappa_{A6} = \kappa_{C6} = \kappa_{D6}$) \Rightarrow Choose $\kappa_A = \kappa_{A6}$

Current-current hypothesis

The ratio EW masses/ coloured masses strongly depends on the ratio κ_{A6}/κ_A Unfortunately the large-N approximation does not determine this ratio uniquely (but still determines $\kappa_{A6} = \kappa_{C6} = \kappa_{D6}$) \Rightarrow Choose $\kappa_A = \kappa_{A6}$

Singlet meson masses with mixing

(Pseudo-)scalars: Anomalous operator $A_{\psi X}$ induces a coupling $\psi^2 X^2$ of the same order as the couplings ψ^4 , X^4

 \Rightarrow One linear combination of η_0 is a pNGB (massless for $m_X=0)$

The electroweak sector

2 The coloured sector

Baryonic sector

Calculation of top partners masses within NJL framework [work in progress]

 \Rightarrow Possibility to have light top partners for PC?

 \Rightarrow Relevant for more phenomenological approaches where mixing with top partners is included, e.g. if $t' \sim (5+1)_{Sp(4)}$

$$M_{top} = \begin{pmatrix} 0 & -y_{5L}f\cos^2\frac{\theta}{2} & y_{5L}f\sin^2\frac{\theta}{2} & \frac{y_{1L}}{\sqrt{2}}fs_{\theta} & 0\\ \frac{y_{5R}}{\sqrt{2}}fs_{\theta} & M_5 & 0 & 0 & 0\\ \frac{y_{5R}}{\sqrt{2}}fs_{\theta} & 0 & M_5 & 0 & 0\\ -y_{1R}fc_{\theta} & 0 & 0 & M_1 & 0\\ 0 & 0 & 0 & 0 & M_5 \end{pmatrix}$$

► NJL allows to estimate VL masses M₁ and M₅ and similarly for other embedding or models ⇒ What is the more intersting top partner? the most favorable one?

▶ Allows to discriminate different scenarios: gives an idea if $M_1 \simeq M_5$, $M_1 > M_5$ or $M_1 < M_5$

NJL computationo of baryon masses

▶ Identify baryons $(\psi\psi X),\,\cdots$ ⇒ Lorentz, hypercolour and flavour contractions

> Approximate trilinear baryons as diquark-quark system:

 \Rightarrow Compute diquarks masses with same techniques employed for mesons

> Static approximation: Neglect kinetic term of the exchange fermions

 \Rightarrow pinch diagrams to get fermi interactions between 2 diquarks and 2 fermions \Rightarrow Couplings of diquarks should also be extracted from the NJL ressumation

Resum the geometrical series with loops of constituent fermions and diquark:

⇒ Loops involve two masses ⇒ Only diquarks bound states $(M_d < 2M_f)$ contribute to baryon mass Thorough analysis of the spectrum of meson (and baryons) resonances in a confining gauge theory with fermions in two different hypercolour representations

▶ <u>NJL well describes SSB</u>: non-perturbative computation of $M_{\psi,X}$ and f⇒ f can be as small as $\Lambda/10 \rightarrow$ large hierarchy could explain that no new states have been observed so far at LHC

► Computation of the composite meson masses (consistent with lattice results) ⇒ spectrum belong to multi-TeV range but few states can be relatively light

- EW and coloured pNGBs including η_0
- η' for small κ_B/κ_A
- σ for small ξ

▶ Only few parameters (ξ , κ_{A6}/κ_A , κ_B/κ_A , N, m_X) if current-current hypothesis is assumed \Rightarrow Phenomenologically simple

Main limitation: absence of interactions with SM fermion fields

► Baryon masses could be used as input parameters for more effective approaches where mixing with light top partners is explicitly included ⇒ Exotic decays of VLQs could significantly affect experimental bounds

- $\mathcal{T}
 ightarrow \eta_0 t$ with large branching ratio
- $\widetilde{T}_5 o \eta t$ withBr=1 [1712.XXXXX, Bizot, Caciapaglia, Flacke]
- $X_{5/3}
 ightarrow \pi_6^c t$, \cdots
- Consider other UV completions
- \Rightarrow $f \sim N$ imply lighter composite resonances
- ▶ Apply NJL to minimal fundamental partial compositeness $\Rightarrow B = (S\psi)$: easy to compute top partners masses [Sanino, Strumia, Tesi, '16]
- Other applications of NJL techniques to composite (Higgs) models?

Thanks for your attention!

Four-fermions operators couplings may be related

 \Rightarrow Prediction of relative strength between the various physical channels (works well in QCD)

Start from Sp(2N) current-current operators: encode UV dynamics in 'ladder' approximation, that holds when N is (moderately) large

Use Fierz transformations to generate various operators

$$\mathcal{L}_{UV} = g_{HC} \mathcal{J}_{\psi}^{\mu l} \mathcal{G}_{\mu l} \qquad \mathcal{J}_{\psi}^{\mu l} = \psi \left(\Omega T^{l} \right) \sigma^{\mu} \overline{\psi}$$

Assume that confining strong dynamics can be described (1^{rst} approximation) by exchange of one hypergluon which acquired a dynamical mass \Rightarrow 'Ladder' approximation strong dynamics generates Sp(2N) current-current operators

$$\mathcal{L}_{ ext{eff}} = rac{\kappa_{UV}}{2N} \mathcal{J}_{\psi}^{\mu I} \mathcal{J}_{\psi \mu}^{I} \qquad \kappa_{UV}/(2N) \sim g_{HC}^2/\Lambda^2 \quad (g_{HC} \sim 1/\sqrt{2N})$$

Lorentz and SU(N) for the fundamental (flavour) Fierz transformations are very well-known but not Sp(2N) that we derived

Four-fermions operators couplings may be related \Rightarrow Prediction of relative strength between the various physical channels (works well in QCD)

Start from Sp(2N) current-current operators: encode UV dynamics in 'ladder' approximation, that holds when N is (moderately) large

Use Fierz transformations to generate various operators

Sp(2N) Fierz matrix for the fundamental representation:

$$\begin{pmatrix} (\Omega T^{0})_{ij} (\Omega T^{0})_{kl} \\ \sum_{l} (\Omega T^{l})_{ij} (\Omega T^{l})_{kl} \\ \sum_{l} (\Omega T^{\hat{l}})_{ij} (\Omega T^{\hat{l}})_{kl} \end{pmatrix} = \begin{pmatrix} \frac{1}{2N} & \frac{1}{2N} & \frac{1}{2N} \\ \frac{2N+1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{(2N+1)(N-1)}{2N} & \frac{N-1}{2N} & -\frac{N+1}{2N} \end{pmatrix} \begin{pmatrix} (\Omega T^{0})_{il} (\Omega T^{0})_{kj} \\ \sum_{l} (\Omega T^{l})_{il} (\Omega T^{l})_{kj} \\ \sum_{\hat{l}} (\Omega T^{\hat{l}})_{il} (\Omega T^{\hat{l}})_{kj} \end{pmatrix} ,$$

The fate of the SU(4) symmetry

► The model is a vector-like gauge theory: all fermions ψ can be made massive $(m_{\psi}\psi\psi)$, while preserving the gauge hypercolour symmetry $G_c = Sp(2N)$

Three cases in vector-like theories: [Peskin, '80]

• $G = SU(N_f)_L \times SU(N_f)_R$ and $H_m = SU(N_f)_V$ (complex rep. of \mathcal{G})

► $G = SU(2N_f)$ and $H_m = SO(2N_f)$ (real rep.) $H_m = Sp(2N_f)$ (pseudo-real rep.)

▶ <u>Vafa-Witten theorem</u>: The flavour subgroup *H* of *G* preserved by m_{ψ} can not be spontaneously broken \Rightarrow If SU(4) broken, it is broken down to Sp(4)

't Hooft anomaly matching:

Any global UV anomaly (generated by the hyperfermions ψ) must be matched in the IR, either by massless spin-1/2 baryons or Goldstone boson

 ψ 's can not form baryons because they are in pseudo-real hypercolour irreps \Rightarrow SU(4) unavoidably spontaneously broken

 $d^{AB\hat{C}} = 2 \operatorname{Tr}[\{T^A, T^B\} T^{\hat{C}}]$

SU(4) broken $(T^{\hat{A}})$ and unbroken $(T^{\hat{A}})$ generators combine in non-zero anomaly coefficients \Rightarrow Global anomalies

$$(\psi^a \psi^b) \equiv \psi^a_i \Omega_{ij} \psi^b_j$$

The unique invariant tensor of Sp(2N) is two-index antisymmetric $\Rightarrow SU(4)$ -flavour contraction also antisymmetric $(4 \times 4 = 6_A + 10_S)$

The fate of $SU(4) \times SU(6) \times U(1)$

$$\begin{array}{ll} \hline \text{Trilinear baryons:} & \Psi^{abf} = (\psi^a \psi^b X^f), \ \Psi^{ab}_f = (\psi^a \psi^b \overline{X}_f) \ \Psi^{af}_b = (\chi^f \psi^a \overline{\psi}_b X^f) \\ & \Psi^{fgh} = (X^f X^g X^h), \ \Psi^{fg}_h = (X^f X^g \overline{X}_h) \end{array}$$

Anomaly matching condition:

$$\sum_{i=\psi,X} n_i A(r_i) = \sum_{i=baryon} n_{i'} A(r_i), \qquad 2 \operatorname{Tr}[T_r^{\hat{A}}\{T_r^B, T_r^C\}] = A(r) d^{\hat{A}BC}$$

► <u>SU(4)³</u>: Matching impossible for $N \neq 8n \Rightarrow SU(4)$ breaks to Sp(4) and one expects non-zero condensate $\langle \psi \psi \rangle \neq 0$

► $\underline{SU(6)^3}$: Matching always possible \Rightarrow SU(6) may not break to SO(6) and the condensate $\langle XX \rangle$ may vanish or not

• $SU(4)^2 \times U(1), SU(6)^2 \times U(1), U(1)^3$: U(1) most likely broken by $\langle \psi \psi \rangle$

Radiative contributions to the coloured pNGBs

Gauging explicitly breaks G and induce radiative mass to NGBs:

$$\Delta M_{G_{\hat{A}}}^{2} = -\frac{3}{4\pi} \frac{1}{F_{G}^{2}} \frac{g_{W}^{2}}{4\pi} \times \int_{0}^{\infty} dQ^{2} Q^{2} \Pi_{V-A}(-Q^{2}) \times \left[\sum_{\hat{B}} \left(f^{\hat{A}W\hat{B}} \right)^{2} - \sum_{B} \left(f^{\hat{A}\hat{W}B} \right)^{2} \right]_{\hat{B}}^{Abc} = 2iTr(T^{a}[T^{b}, T^{c}])$$

$$T^{W} = T^{W} + T^{\hat{W}} \text{ gauged generators, } T^{W,\hat{W}} \text{ linear combination of } T^{A,\hat{A}}$$
As $G_{SM} \subset H \to f^{\hat{A}\hat{W}B} = 0(T^{\hat{W}} = 0) \Rightarrow \text{ Always positive contributionin CHMs that can not break EW symmetry}$

Coloured pNGBs masses

Coloured pNGBs receive mass from gluon loops:

$$\underline{\text{Octet}} : \Delta M_{O_c}^2 = -\frac{3}{4\pi} \frac{1}{F_{G_c}^2} \int_0^\infty dQ^2 \ Q^2 \ \Pi_{V-A}^X(-Q^2) \times \frac{3}{4\pi} g_s^2 \\
\underline{\text{Sextet}} : \Delta M_{S_c}^2 = -\frac{3}{4\pi} \frac{1}{F_{G_c}^2} \int_0^\infty dQ^2 \ Q^2 \ \Pi_{V-A}^X(-Q^2) \times \frac{1}{4\pi} \left(\frac{10}{3} g_s^2 + \frac{16}{9} g'^2\right)$$

 \Rightarrow Enough to comply with direct searches even for f = 1 TeV (and even for $m_X = 0$ contarry to the common expectation)