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Abstract
The Davydov model for exciton–phonon coupling in hydrogen-bonded
molecular chains is reconsidered in the context of two-wave resonant
interaction. By applying a semi-discrete slowly varying envelope
approximation, when the physical problem is that of the long-distance evolution
of an input finite duration excitonic pulse, we derive an integrable limit model
which preserves the coupling nature of the process. The spectral transform is
constructed with emphasis on the complete characterization of the spectral data.
As an application, the localized one-soliton solution is explicitly constructed.
Then by using Darboux–Bäcklund transformations, a non-local (or topological)
one-soliton solution is also derived. As a consequence, the system possess two
different soliton solutions where the phonon component is a localized pulse,
but where the exciton wave is either localized (bell shape) or topological (kink
shape). The resulting approximate soliton solutions of the Davydov model in
the resonant regime are subsonic in the localized case and supersonic in the
topological case. Finally, by expressing the Bianchi superposition theorem,
a nonlinear superposition formula is derived allowing for explicit two-soliton
solution.

PACS numbers: 63.20.Ls, 05.45.Yv

1. Introduction

The Davydov model [1], later modified and largely studied by Scott [2], describes the coupling
between excitons and phonons in a diatomic molecular chain. Well-known physical situations
where this model applies are the alpha helix proteins and the acetanilide molecule. They have
the common property of being constituted by one-dimensional chains of hydrogen-bonded
peptide groups, supporting the phonon wave, that can couple to excitations of the amide-I
(C==O stretching). In the Scott version, the amide-I couples only to the single adjacent
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hydrogen bond elongation while in the Davydov approach it is coupled to the two nearest
H-bonds.

The Davydov model of such a coupling results in the following system of coupled
equations [2, 3],

ih̄ȧn = [E0 + W + χ(βn+1 − βn)]an − J (an+1 + an−1)

Mβ̈n = K(βn+1 − 2βn + βn−1) + χ(|an|2 − |an−1|2) (1.1)

written here for a single chain. The state of the amide-I excitation is described by the
eigenfunction an(t) solution of a time-dependent Schrödinger equation in the potential
βn+1 − βn. The dynamical variable βn stands for the longitudinal displacement along the
chain, M is the mass of the peptide group, K is the spring constant of the hydrogen bond, E0

is the energy of the amide-I and W is the total energy of the peptide group displacements.
The constant χ is the exciton–phonon coupling parameter and J measures the energy of the
dipole–dipole interaction of amide-I oscillations. An overdot stands for derivation with respect
to time T.

Upon defining the new dimensionless time variable t = JT /h̄, and the adimensional
quantities

�n = an

h̄χ

J
√

JM
exp

[ i

J
(E0 + W − 2J )t

]
Qn = χ

J
(βn+1 − βn) (1.2)

the system (1.1) becomes

i∂t�n + (�n+1 − 2�n + �n−1) = Qn�n (1.3)

∂2
t Qn − V 2(Qn+1 − 2Qn + Qn−1) = |�n+1|2 − 2|�n|2 + |�n−1|2. (1.4)

The only remaining physical constant is the adimensional sound velocity

V = h̄

J
vp vp =

√
K

M
(1.5)

where vp denotes the phonon velocity in units of cells per second. Note that the coupling
parameter χ enters now in the amplitude of �n(t).

Our basic system (1.3), (1.4) applies to a number of physically interesting phenomena
involving exciton–phonon or electron–phonon coupling [4, 5]. Moreover, interesting
numerical studies have been performed recently [6] where a kind of resonance phenomena has
been unveiled. We understand it here as a two-wave resonant interaction and then study the
properties of the system in the region of parameters where this resonance occurs. Note that
the continuous limit of the model (1.3), (1.4) is nothing but the Zakharov equation governing
the Langmuir–acoustic wave interaction in a plasma [7].

To be more precise, we are interested in the long-distance effect of the scattering of an
excitonic wave packet �n with resonant carrier frequency (see definition later) entering a
medium at n = 0 where coupling with the phonon wave is allowed for by the system (1.3),
(1.4). In particular, we shall derive the following limit system,

i

2
uy + uss = qu qy = 4(|u|2)s (1.6)

where u and q represent the slowly varying envelopes of the excitonic and of the phonon
waves, respectively, and where the variable s stands for a scaled retarded time varying on R,
and y for a scaled space extending on any finite support y ∈ [0, L].

The above system was shown to be integrable in [8], where it was associated with a
3 × 3 first-order spectral problem of the Zakharov–Shabat type and solved with the traditional
Gel’fand–Levitan–Marchenko approach for potentials q and u vanishing at large s. Soliton
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solutions vanishing at infinity were also obtained. Here, we reconsider the spectral transform
with two main objectives: first, the solution of the characterization problem for the spectral
data, and second, the solution of the inverse problem in terms of the Cauchy–Green solution
of a Riemann–Hilbert boundary-value problem.

To this end we found it convenient to consider the more general system of nonlinear
equations

qy = 4(uv)s
i

2
uy + uss = qu − i

2
vy + vss = qv (1.7)

which reduces to (1.6) for

v = u q ∈ R (1.8)

and to relate it to the following mixed Schrödinger/Zakharov–Shabat system,

ϕ1,ss + k2ϕ1 − qϕ1 = −iuϕ2 ϕ2,s = vϕ1 (1.9)

which, in the reduced case, is equivalent to the spectral problem used in [8].
We solve then the direct and inverse spectral problem and derive the soliton solution in

the space of functions q, u and v vanishing at large s. In the reduced case (1.8), this solution
will be shown to be (note that u is defined up to an arbitrary constant phase)

u(y, s) = η
√

2ζ eiζ s−2i(ζ 2−η2)y

cosh(ηs − 4ζηy)
(1.10)

q(y, s) = −2η2

cosh2(ηs − 4ζηy)
(1.11)

where η and ζ are the soliton parameters (real valued and with ζ > 0). We recover with this
expression the soliton solution found in [8].

However, this is not the only admissible soliton solution of the system and, by constructing
the Darboux–Bäcklund transformation, we obtain a one-soliton solution with q vanishing at
large s, but with u and v non-vanishing at large s. In the reduced case (1.8) it reads

u(y, s) =
√

2ζ [iζ − η tanh(ηs + 4ζηy)] (1.12)

q(y, s) = −2η2

cosh2(ηs + 4ζηy)
(1.13)

with again real-valued parameters η and ζ > 0. Note that these two solitons differ not only in
their topological properties but also in their direction of propagation as indeed the parameter
ζ is positive in both cases.

Returning to the physical quantities, these solitons provide the following approximate
solutions of the original system. In the case of a localized soliton, the approximate solution
reads

�n(t) = ei(krn−ωr t)V
√

2ζ

(
2
√

cos kr

sin kr

)1/2
η

cosh Zn(t)
(1.14)

Qn(t) = −2η2

cosh2 Zn(t)
(1.15)

Zn(t) = ηV√
cos kr

(
t − n

V

)
− ηζ

sin kr

(n − n0) (1.16)
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where the initial position n0 is arbitrary and the resonant wave number kr is defined in
(2.6) by V = 2 sin kr while the resonant frequency results from the dispersion relation
ωr = 2(1 − cos kr). Note that the velocity of the pulse is given by

v = V

(
1 + ζ

√
cos kr

sin kr

)−1

(1.17)

which means a subsonic solitary wave (v < V ). Indeed, as discussed later the parameter ζ is
a small (positive) quantity, and the value of kr is close to, and less than π/2.

Next, in the case of non-localized solution u(y, s) the approximate solution reads

�n(t) = ei(krn−ωr t)V
√

2ζ

(
2
√

cos kr

sin kr

)1/2

[iζ − η tanh Xn(t)] (1.18)

Qn(t) = −2η2

cosh2 Xn(t)
(1.19)

Xn(t) = ηV√
cos kr

(
t − n

V

)
+

ηζ

sin kr

(n − n0) (1.20)

which is a supersonic solitary wave as indeed

v = V

(
1 − ζ

√
cos kr

sin kr

)−1

. (1.21)

These expressions are approximate solutions to the Davydov system in the precise sense given
in (2.30). Their role in a given physical context is reported in future work.

2. Resonant interaction, integrable limit

2.1. Two-wave resonant process

Following [9, 10], two-wave resonant interaction can be understood as a three-wave interaction
between two excitonic waves (ω1, k1), (ω2, k2), and one phonon wave (
,K) in the limit
K → 0 for which k1 → k2. From the selection rules of the three-wave process

k1 − k2 = K ω(k1) − ω(k2) = 
(K) (2.1)

we can write
ω(k1) − ω(k2)

k1 − k2
= 
(K)

K
(2.2)

which in the limit K → 0, that is k1 → k2, leads to the two-wave resonant interaction criterion
∂ω(k)

∂k

∣∣∣∣
kr

= lim
K→0


(K)

K
(2.3)

where we have defined the resonant wave number kr = k1 = k2.
A carrier wave exp[i(kn − ωt)] leads to the linear dispersion relation of (1.3)

ω(k) = 2(1 − cos k) (2.4)

while the phonon wave dispersion relation reads


2(K) = 2V 2(1 − cos K). (2.5)

The solution kr ∈ [0, π ] of the resonant condition (2.3) determines the value of the resonant
frequency ω(kr) = ωr of the exciton wave and we get from the above dispersion relations

sin kr = 1
2V ωr = 2(1 − cos kr). (2.6)
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We expect this resonance to be a candidate for the interpretation of the anomalous absorption
band at 1650 cm−1 discovered in crystalline acetanilide [11]. In such a situation the amide-I
lies at E0/hc = 1665 cm−1, hence the shift dE is of order 15 cm−1. Returning to the physical
time, the resonant frequency ωr gives the energy dE = h̄ωr which in cm−1 reads

dE = 2J ′(1 − cos kr) J ′ = J

hc
(2.7)

(c is the velocity of light in cm s−1 and hence J ′ is nothing but J read in cm−1). Recent
experiments have demonstrated that, as conjectured before, the anomalous absorption band is
indeed resulting from a nonlinear process as the anomalous peak is strongly anharmonic [12].

The wave number kr is given by equation (2.6), namely from (1.5) by

sin kr = vp

4πcJ ′ . (2.8)

Using numerical values (vp results from the measurements of the velocity of sound in [13])
we obtain, by solving the system (2.7), (2.8) for {J ′, kr},

vp = 373 × 1010 s−1

dE = 15 cm−1

}
⇒

{
kr = 1.30
J ′ = 10.3 cm−1 (2.9)

and thus J lies in a reasonable range (see e.g. [2, p 16]).
As a consequence, the above two-wave interaction process will take place for a value of

the resonant wave number kr ∼ 1.3, which lies around the centre of the Brillouin zone. This
fact forbids the use of the continuous limit approximation for the exciton wavefunction �n,
and we shall proceed now with a semi-discrete slowly varying envelope approximation in the
spirit of [14]. In all what follows we shall assume then

kr <
π

2
(2.10)

as the value π/2 gives rise to singularities (for which a particular treatment would be required).

2.2. Modellization of the scattering process

The process we are interested in is the long-distance effect of the scattering of an excitonic
wave packet �n with carrier frequency ωr (and wave number kr ), entering a medium at n = 0
where coupling with the phonon wave is allowed for. The model under consideration is the
Davydov system (1.3), (1.4) and, based on the arguments of [15], the wave packet to consider
is

�n(t) =
∫

dω �̂(ω) ei(kn−ωt) (2.11)

where the wave number is expanded in terms of the frequency as

ω = ωr + εν k = kr + ε
ν

V
+ ε2Rν2 + · · · . (2.12)

We have from (2.4) and (2.6)

V = ∂ω(k)

∂k

∣∣∣∣
kr

2R = ∂2k

∂ω2

∣∣∣∣
kr

. (2.13)

Note that the group velocity at resonance V is given in (2.6) and is nothing but the adimensional
phonon velocity. Note also that the dispersion coefficient R is given, for sin kr > 0, by the
expression

2R = − cos kr

4 sin3 kr

(2.14)

resulting from (2.4).
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The small parameter ε measures the departure of ω from the resonant frequency ωr . The
above wave packet can then be written as

�n(t) = ei(krn−ωr t)f (ξ, τ ) (2.15)

with the small-amplitude slowly varying modulation f in the frame

τ = ε
(
t − n

V

)
ξ = ε2n. (2.16)

This frame indicates that we consider long (ε−2) distance effects in the retarded slow (ε−1) time
allowing the input disturbance enough time to reach the observer, which indeed corresponds
to the scattering of a wave packet.

2.3. Asymptotic model

Resulting from these general considerations, we seek now a solution of the system (1.3), (1.4)
under the following form:

�n(t) = ε
1
2 ei(krn−ωr t)

∞∑
j=1

εjf (j)(ξ, τ ) (2.17)

Qn(t) = ε

∞∑
j=1

εjq(j)(ξ, τ ). (2.18)

Note that the envelope of the exciton wave is continuous but the carrier is kept discrete. Note
also the relative scaling between �n and Qn which results from a balance in the coupling
terms of the model.

We consider the above expansions for �n and Qn up to the order ε7/2 and ε5, respectively,
i.e.

�n+m = ε3/2 eikr (n+m)−iωr t

[(
1 − εm

V
∂τ + ε2m∂ξ + ε2 m2

2V 2
∂2
τ

)
f (1)

+ ε
(

1 − ε
m

V
∂τ

)
f (2) + ε2f (3)

]
+ O(ε9/2) (2.19)

Qn+m = ε2

(
1 − ε

m

V
∂τ + ε2m∂ξ + ε2 m2

2V 2
∂2
τ − ε3 m2

V
∂τ ∂ξ − ε3 m3

6V 3
∂3
τ

)
q(1)

+ ε3

(
1 − ε

m

V
∂τ + ε2m∂ξ + ε2 m2

2V 2
∂2
τ

)
q(2)

+ ε4
(

1 − ε
m

V
∂τ

)
q(3) + ε5q(4) + O(ε6). (2.20)

By inserting these expressions into (1.3) we obtain at the order ε3/2 the dispersion relation
(2.4), at the order ε5/2 the resonant condition (2.3) and finally at the order ε7/2

2i sin krfξ +
cos kr

V 2
fττ = qf (2.21)

where we have defined

f = f (1)(ξ, τ ) q = q(1)(ξ, τ ). (2.22)
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Next, the phonon equation at the order ε5 leads to the equation

qξτ = 1

2V 3
(|f |2)ττ . (2.23)

It is worth remarking that such a limit works because of the resonant condition (2.3),
sin kr = V/2. This can then be thought of as a result of the requirement of a constructive
interaction of fields of structure (2.17), (2.18). Indeed, examination of the lowest orders in ε

in the equation for the phonons, for slow variables as in (2.16) but with the group velocity vg

instead of V , would lead precisely to the resonant criterion vg = V .
In summary, upon integration of (2.23), we have obtained the following system:

2i sin krfξ +
cos kr

V 2
fττ = qf qξ = 1

2V 3
(|f |2)τ . (2.24)

As expected, this system is invariant under the reverse transformation of field and variables
that gets rid of the small parameter ε, namely

τ → τε−1 ξ → ξε−2 f → f ε−3/2 q → qε−2. (2.25)

The above step can actually be used as a means to check the relative scaling. Then the system
(2.24) will be considered from now on as written in the physical (still adimensional) world.

Finally, the constants that still appear in (2.24) can be scaled off by the change of variables,
remember (2.10),

y = ξ

4 sin kr

s = V τ√
cos kr

u(y, s) = 1

V

(
sin kr

2
√

cos kr

)1/2

f (ξ, τ ) (2.26)

for which it reads as announced in the introduction, namely
i

2
uy + uss = qu qy = 4(|u|2)s . (2.27)

It is worth remembering that u(y, s) represents the envelope of the excitonic wave while
q(y, s) stands for the envelope of the phonon wave where the time s takes values on the real
line and where the space y lies on any given finite interval.

2.4. Approximate solutions

From the preceding various changes of variables, we may now transform the one-soliton
solution, for instance (1.12), (1.13), to the corresponding fields in the physical space. The
approximate solution (1.18), (1.19) represents then the first terms in expansions (2.17) and
(2.18). Hence the value of Qn(t) has a precision O(ε3) while �n(t) holds to O(ε5/2).

The value of ε is specified by the choice of the boundary value �0(t) as a measure of
the relative variations of phase of the envelope versus the carrier. For instance, in expression
(1.18) for �n, we receive

ε ∼ η (2.28)

which does fit the scaling of time in (2.16) and moreover, is consistent with the amplitude ε2

of the dominant term in Qn. Looking then at the spatial dependence in (2.16) we obtain

ηζ ∼ ε2 ⇒ ζ ∼ ε (2.29)

which again is consistent with the amplitude ε3/2 of the dominant term in �n.
To summarize, we thus may write

�n(t) = ei(krn−ωr t)V
√

2ζ

(
2
√

cos kr

sin kr

)1/2

[iζ − η tanh Xn(t) + O(η2)]

(2.30)

Qn(t) = −2η2

cosh2 Xn(t)
+ O(η3)
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where the argument Xn(t) is defined in (1.20). The same relations hold also for the local
approximate solution (1.14 ), (1.15).

3. The inverse spectral transform

3.1. Boundary-value problem

We are interested here in the evolution along N molecules of a chain, i.e. y ∈ [0, L], of a signal
sent in n = 0. In other words we assume the following data,

t ∈ R : {�0(t),Q0(t)} (3.1)

which map through the change of variables to

s ∈ R : {u(0, s) = u0(s), q(0, s) = q0(s)}. (3.2)

The method of the inverse spectral (scattering) transform (IST) will be used to solve the
system (1.6) on the domain y ∈ [0, L] and s ∈ (−∞, +∞) associated with the Dirichlet
boundary-value data of u0(s) and q0(s). Note that with respect to the usual language in the
inverse scattering theory, s plays the role of the space variable and y the role of time.

The IST is considered in the space of functions vanishing sufficiently rapidly as s → ±∞.
We shall see that the evolution in y does not destroy the good properties of the spectral data
ensuring that u(y, s) and q(y, s) preserve their good behaviour at large s for any y, as usual
in the inverse scattering theory [16].

3.2. Lax pair

We consider a Lax pair of linear operators defining the mixed Schrödinger and Zakharov–
Shabat spectral problem

ϕ1,ss + k2ϕ1 − qϕ1 = −iuϕ2 ϕ2,s = vϕ1 (3.3)

and the auxiliary spectral problem

ϕ1,y = −ik2ϕ1 + 2uϕ2 ϕ2,y = ik2ϕ2 + 2ivϕ1,s − 2ivsϕ1 (3.4)

where k is the spectral parameter and q, u and v are the potentials. The compatibility of these
two systems leads to the following y-evolution equations:

qy = 4(uv)s
i

2
uy + uss = qu − i

2
vy + vss = qv. (3.5)

This integrable nonlinear system reduces to our equation (1.6) for

v = u q ∈ R. (3.6)

Solving the direct problem for the above Lax pair means using the spectral problem (3.3) to
define the spectral data as a set of three functions of the spectral parameter k. Then, the
auxiliary spectral problem (3.4) is used to obtain the dependence of these spectral data on the
variable y. Solving then the inverse problem results in the reconstruction of the potentials
q(y, s), u(y, s) and v(y, s), at fixed arbitrary value of y, from the spectral data.

In the following, when convenient, we shall use the vectorial notation

ϕ =
(

ϕ1

ϕ2

)
(3.7)

for any solution of the spectral problems (3.3) and (3.4).
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3.3. Jost solutions

We define the following two sets of Jost solutions, namely

ϕ±
1 = e−iks +

∫ s

∓∞
ds ′ e

ik(s−s ′) − e−ik(s−s ′)

2ik

[
qϕ±

1 − iuϕ±
2

]
ϕ±

2 =
∫ s

∓∞
ds ′vϕ±

1

(3.8)

and

ψ±
1 =

∫ s

∓∞
ds ′ eik(s−s ′)

2i(k ± i0)

[
qψ±

1 − iuψ±
2

]−
∫ s

±∞
ds ′ e−ik(s−s ′)

2i(k ± i0)

[
qψ±

1 − iuψ±
2

]
(3.9)

ψ±
2 = 1 +

∫ s

+∞
ds ′vψ±

1

where the signs ± are in correspondence. Note that for u = 0 the Jost solutions in (3.8) reduce
to the traditional Jost solutions of the Schrödinger spectral problem.

These four Jost solutions ϕ±, ψ± are not independent since the spectral problem (3.3) is
of third order and in fact the symmetry

ψ+(k) = ψ−(−k) (3.10)

follows directly from the definition of ψ .
The integral equations defining the Jost solutions ϕ± can be studied using the same

method used in the case of the Schrödinger spectral problem. One can prove that for potentials
satisfying ∫ +∞

−∞
ds(1 + |s|)

|q(s)|
|u(s)|
|v(s)|

 < +∞ (3.11)

the Jost solutions ϕ+ eiks (respectively ϕ− eiks) are bounded and analytic in the upper
(respectively lower) half complex plane of the spectral parameter k. The integral equation
defining ψ+ requires unusual analysis, reported in the appendix. As a result for potentials
satisfying (3.11) ψ+ is bounded and analytic in the upper half complex plane of k, once a
factorizing singularity 1/(k + i0) is subtracted and possible poles.

3.4. Direct problem

As usual in the inverse scattering theory, we consider ϕ± and ψ± as unique analytical functions
defined as ϕ+ and ψ+ in the upper half plane and as ϕ− and ψ− in the lower half plane and
we evaluate their discontinuity along the real k-axis. This is done by direct use of the defining
integral equations. In doing this it is convenient to use instead of ϕ+(k, s) the eigenfunction
φ+(k, s) defined by the following integral equation,

φ+
1 (k, s) = e−iks +

1

2i(k + i0)

∫ s

−∞
ds ′ eik(s−s ′)[−iuφ+

2 + qφ+
1

]
+

1

2i(k + i0)

∫ +∞

s

ds ′ e−ik(s−s ′) [−iuφ+
2 + qφ+

1

]
(3.12)

φ+
2 (k, s) =

∫ s

−∞
ds ′vφ+

1
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which has a slightly different kernel with respect to ϕ+(k, s) and is simply related to it. In
fact, by simple comparison of (3.8) with (3.12) we obtain that

φ+(k, s) = 1

a+(k)
ϕ+(k, s) (3.13)

where the coefficient a+, usually called a Jost function, is

a+(k) = 1 − 1

2i(k + i0)

∫ +∞

−∞
ds eiks

[
q(s)ϕ+

1 (k, s) − iu(s)ϕ+
2 (k, s)

]
. (3.14)

The analytic properties of ϕ+(k, s) imply that a+(k) is analytic in the upper half plane, where
it may possess isolated zeros, which for simplicity we suppose to be finite in number and
simple. Therefore φ+ may have simple poles at k = kj (j = 1, 2, . . . , N). Correspondingly,
we suppose that also the poles of ψ+ are simple and N in number, and, precisely, located at
k = k̂j (j = 1, 2, . . . , N ). These poles are related, as we will see in the following, to the
presence of solitonic structures in the solution.

For notation coherence we rename ϕ−(k, s) as φ−(k, s). By use of the integral equations
defining the Jost solutions φ and ψ we obtain for their discontinuity across the real k-axis the
following coupled Riemann–Hilbert relations,

φ+(k, s) − φ−(k, s) = α+(k)ψ+(k, s) + β+(k)φ−(−k, s) (3.15)

ψ+(k, s) − ψ−(k, s) = γ +(k)φ−(−k, s) − γ +(−k)φ−(k, s) (3.16)

where

α±(k) =
∫ +∞

−∞
ds v(s)φ±

1 (k, s) (3.17)

γ ±(k) =
∫ +∞

−∞
ds

e−iks

2i(k ± i0)

[
q(s)ψ±

1 (k, s) − iu(s)ψ±
2 (k, s)

]
(3.18)

and
β±(k) = ρ±(k) − α±(k)γ ±(k) (3.19)

with

ρ±(k) =
∫ +∞

−∞
ds

e−iks

2i(k ± i0)

[
q(s)φ±

1 (k, s) − iu(s)φ±
2 (k, s)

]
. (3.20)

The coefficients α+, β+ and γ + are the spectral data related to the continuous spectrum (k ∈ R).
Their explicit expressions given above in terms of the Jost solutions and potentials solve the
direct spectral problem for the continuous spectrum. Note that, due to the factor 1/(k + i0), β+

and γ + are tempered distributions. For future convenience also the alternative, and of course
equivalent, set of spectral data α−, β− and γ − were introduced. They can be obtained
analogously modifying the integral equation defining ϕ− and leaving unchanged that defining
ϕ+.

Before turning to the discrete spectrum, it is worth remarking that these two sets of spectral
data determine the asymptotic behaviour of the Jost solutions at s = ±∞. Precisely, by direct
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use of the integral equations for φ± and ψ+ and recalling the definitions (3.17), (3.18), (3.20),
(3.13) and (3.14) we obtain at s = +∞

φ+(k, s)
∼

s→+∞

(
e−iks + ρ+ eiks

α+

) {
k ∈ R

k ∈ R

φ−(k, s)
∼

s→+∞

(
e−iks

0

) {
kIm < 0

kIm < 0

ψ+(k, s)
∼

s→+∞

(
γ + eiks

1

) {
k ∈ R

kIm > 0

(3.21)

and at s = −∞

φ+(k, s)
∼

s→−∞

(
1

a+(k)
e−iks

0

) {
kIm > 0

kIm > 0

φ−(k, s)
∼

s→−∞

(
a−(k) e−iks − ρ−(k) eiks

−α−(k)

) {
k ∈ R

k ∈ R

ψ+(k, s)
∼

s→−∞

(
−γ −(−k) e−iks

τ +(k)

) {
k ∈ R

kIm > 0.

(3.22)

where we introduced the Jost functions

τ +(k) = 1 −
∫ +∞

−∞
ds ′ v(s ′)ψ+

1 (k, s ′) (3.23)

a−(k) = 1 +
1

2i(k − i0)

∫ +∞

−∞
ds eiks[q(s)ϕ−

1 (k, s) − iu(s)ϕ−
2 (k, s)] (3.24)

which are respectively analytic in the upper and lower half k plane with the exception of
possible poles for τ +(k). The region in the complex k plane where the asymptotic value is
valid is explicitly indicated on the right.

To study then the discrete part of the spectrum we introduce the Wronskian of any three
solutions, say ϕ,ψ and ξ , of the spectral problem (3.3),

W(ϕ,ψ, ξ) = det

ϕ1 ψ1 ξ1

ϕ1,s ψ1,s ξ1,s

ϕ2 ψ2 ξ2

 . (3.25)

One can check that this Wronskian is independent of s. Then, we consider the Wronskian
W(φ+(k), φ−(−k), ψ+(k)) which can be evaluated at any s, in particular for s → ∞, which
from (3.21) gives

W(φ+(k), φ−(−k), ψ+(k)) = 2ik. (3.26)

This Wronskian can also be evaluated by using the asymptotic behaviour of the Jost solutions
at s = −∞. One gets

W(φ+(k), φ−(−k), ψ+(k)) = 2ikτ +(k)
a−(−k)

a+(k)
. (3.27)

Comparing with (3.26) we have

τ +(k) = a+(k)

a−(−k)
(3.28)
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showing that the poles of ψ+ are related to the zeros of the Jost function a−(−k). We suppose
that the zeros of a−(−k) are simple and, then, ki 	= k̂j for any i and j .

From (3.26) at the pole k = kj of φ+ we have

Res
kj

{φ+(k, s)} = Ajψ
+(kj , s) + Bjφ

−(−kj , s). (3.29)

Now we consider the second component of this vectorial equality, insert in it the integral
equations defining the Jost solutions and compute the limit at s = +∞ of both sides recalling
(3.21). Since the limit on the rhs is well defined for kIm > 0, we obtain, on the one hand, that
the integral

c+
j =

∫ +∞

−∞
ds ′v(s ′) Res

kj

{
φ+

1 (k, s ′)
}

(3.30)

is finite and, on the other hand, the following explicit expression of Aj in terms of the Jost
solutions and of the potentials

Aj = c+
j . (3.31)

Analogously, using (3.22) we deduce taking the limit for s → −∞ that the integral

c−
j =

∫ +∞

−∞
ds ′v(s ′)φ−

1 (−kj , s
′) (3.32)

is finite and

Bjc
−
j = Ajτ

+(kj ). (3.33)

Therefore, since from (3.28) τ +(kj ) = 0, we have Bj = 0.
From (3.26) at the pole k = k̂j of ψ+ we have

Res
k=̂kj

{ψ+(k)} = Âjφ
+(̂kj ) + B̂jφ

−(−̂kj ). (3.34)

Considering the second component of this equality at s = +∞, thanks to (3.21), we get,

Âj

∫ +∞

−∞
dsv(s)φ+

1 (̂kj , s) = 0 (3.35)

and, excluding the case in which the integral equals zero and Âj would be left undetermined,
Âj = 0. Then, from the asymptotic of the first components of (3.34) by (3.21) we deduce that
the integral

ĝ +
j =

∫ +∞

−∞
ds

e−îkj s

2îkj

[
q(s) Res

k=̂kj

ψ+
1 (k, s) − iu(s) Res

k=̂kj

ψ+
2 (k, s)

]
(3.36)

is finite and

B̂j = ĝ+
j . (3.37)

Note that since ψ+(k) = ψ−(−k) we have that ψ−(k) has poles at k = −̂kj and

Res
k=−̂kj

{ψ−(k)} = −Res
k=̂kj

{ψ+(k)}. (3.38)

We conclude that the two formulae

Res
kj

{φ+(k, s)} = Ajψ
+(kj , s) (3.39)

Res
k=̂kj

{ψ+(k)} = B̂jφ
−(−̂kj ) (3.40)

relating the residues at the poles of φ+ and ψ+ to special values of ψ+ and φ− together
with equations (3.31), (3.37) for the normalization coefficients Aj and B̂j and (3.17)–(3.20)
completely solve the direct problem furnishing continuous and discrete spectral data in terms
of Jost solutions and potentials.
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3.5. Inverse problem

Solving the inverse problem means to obtain the potentials u, v and q from the spectral data.
This is performed in two steps: first, by reconstructing the Jost solutions φ± and ψ± and,
second, by using their relations with the potentials.

The large k asymptotic of the Jost solutions (obtained by successive integration by part of
their defining integral equations), the discontinuity relations (3.15) and (3.16) on the real k-axis
and the relations (3.39), (3.40) at the poles of φ+ and ψ±, constitute a complete Riemann–
Hilbert boundary-value problem. This problem is solved by the following coupled integral
equations written in their respective half planes (remember Im kj > 0 and Im k̂j > 0),

µ−(k, s) =
(

1
0

)
+

N∑
j=1

Ajψ
+(kj ) eikj s

k − kj

+
1

2π i

∫
dλ

λ − k + i0
[α+(λ)ψ+(λ, s) eiλs + β+(λ)µ−(−λ, s) e2iλs] (3.41)

ψ+(k, s) =
(

0
1

)
+

N∑
j=1

2̂kj B̂jµ
−(−̂kj ) eîkj s

k2 − k̂2
j

+
1

2π i

∫
dλ

λ − k − i0
[γ +(λ)µ−(−λ, s) eiλs − γ +(−λ)µ−(λ, s) e−iλs] (3.42)

where

µ±(k, s) = φ±(k, s) eiks . (3.43)

Note that in these equations, since ψ+(λ) , β+(λ) and γ +(λ) contain a factor 1
λ+i0 , the product

of two distributions appears. In the first equation the product 1
λ−k+i0

1
λ+i0 is a well-defined

distribution regular at k = 0. In the second equation the product must be defined as

D(λ, k) = lim
ε2→+0

lim
ε1→+0

1

λ − k − iε2

1

λ ± iε1
(3.44)

where the limits are to be performed in the order indicated. We have

D(λ, k) = lim
ε2→+0

(
1

λ − k − iε2
− 1

λ ± i0

)
1

k + iε2
(3.45)

which shows that D(λ, k) is a well-defined tempered distribution in the two variables λ and
k and that the reconstructed ψ+ has a factorizing singularity 1/(k + i0), as we stated in the
appendix, solving the direct problem.

The solution of the above closed system of integral equations (3.41), (3.42) furnishes the
potentials by extracting the leading k-orders, namely

q(s) = −2i∂sµ
−(1)
1 (s) v(s) = −iµ−(1)

2 (s) u(s) = iψ+(2)
1 (s) (3.46)

where the upper index (�) stands for the coefficient of k−� in the expansions at large k of the
Jost solutions.

3.6. y-dependence of the spectral data

In the previous section the spectral problem (3.3) has been used to build a bijection between the
set of potentials and the set of spectral data, hence furnishing the complete solution of direct
and inverse problems. We now need to find the y-dependence of the spectral data for potentials
evolving according to (3.5). Since the spectral data are defined via the Jost solutions we first
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derive the evolution equations in y of the Jost solutions or, equivalently, the y-dependence of
the coefficients of a linear combination of the Jost solutions satisfying both spectral problems
(3.3) and (3.4).

Because the Jost solutions have functionally independent behaviour at large s it is enough
to consider the forms

ω1(k, y)φ±(k, y, s) ω2(k, y)ψ±(k, y, s) (3.47)

and determine the evolution in y of ω1 and ω2. By inserting them into (3.4) and by considering
the limit at large s, we easily obtain

ω1,y = −ik2ω1 ω2,y = ik2ω2 (3.48)

together with the following y-evolution of the spectral data and Jost functions:

α+
y = 2ik2α+ ρ+

y = 0 γ +
y = −2ik2γ + a±

y = 0. (3.49)

Hence, finally, the spectral data and Jost functions satisfy the following y-dependence:

α+(k, y) = e2ik2yα+(k, 0) γ +(k, y) = e−2ik2yγ +(k, 0) (3.50)

β+(k, y) = β+(k, 0) a±(k, y) = a±(k, 0). (3.51)

Returning to the Jost solutions, the above results show that φ± are actually solutions of

φ±
1,y = 2uφ±

2 φ±
2,y = 2ik2φ±

2 + 2ivφ±
1,s − 2ivsφ

±
1 (3.52)

while the eigenfunctions ψ± solve

ψ±
1,y = −2ik2ψ±

1 + 2uψ±
2 ψ±

2,y = 2ivψ±
1,s − 2ivsψ

±
1 . (3.53)

The y-dependences of the normalization coefficients Aj and B̂j are simply obtained by
substituting the relations (3.39), (3.40) into (3.52) and (3.53) and then by using them again for
φ−(−k) and ψ+(k). We have

Aj(y) = Aj(0) e2ik2
j y B̂j (y) = Bj(0) e−2îk2

j y . (3.54)

This completes with (3.50), (3.51) the y-dependence of the spectral data.

3.7. Localized one-soliton solution

If the continuous spectrum vanishes, we obtain from (3.41) and (3.42) an algebraic system.
We consider, for simplicity, the case N = 1 in the reduced case q ∈ R, u = v. For a decaying
and regular soliton the spectral data must satisfy the characterization equations

k̂1 = −k1 k1Re < 0 (3.55)

2k1B̂1(0) = −A1(0) (3.56)

and, then, the one-soliton solution is given by

q = 1

�2

|A1(0)|2
k1Re

exp(−2k1Im(s + 4k1Rey)) (3.57)

u = i

�
A1(0) exp

(−k1Im(s + 4k1Rey) − ik1Res − 2i
(
k2

1Re − k2
1Im

)
y
)

(3.58)

with

� = 1 − |A1(0)|2
8k1Rek

2
1Im

exp(−2k1Im(s + 4k1Rey)). (3.59)

The soliton written in (1.10), (1.11) is then obtained by defining k1Re = −ζ and k1Im = η.
Moreover, we have scaled the phase iA1(0)/|A1(0)| to the value 1 in u(y, s), thanks to the
invariance of the system (1.6). When N solitons are present in the solution the characterization
equations (3.55), (3.56) extend to each soliton.
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4. Darboux and Bäcklund transformations

We consider now the existence of pure soliton solutions non-vanishing at large s, which is
not a priori excluded. It is well known that the extension of the inverse scattering theory to
non-decaying potentials is a difficult task. Then we rather derive and apply the Darboux
transformations for the spectral problem (3.3). This is a well-stated technique [17] for
constructing Bäcklund transformations and nonlinear superposition formulae. We shall then
derive explicit one-soliton and two-soliton solutions whose components u and v do not vanish
at large s.

We consider the principal spectral problem (3.3) with potentials u(s), q(s), v(s) and
eigenfunction ϕ(k, s) and forget for a while the y-dependence. The Darboux transformation
can be obtained by constructing a gauge transformed ϕ′(k, s) of ϕ(k, s) that satisfies the same
spectral problem but with transformed potentials u′(s), q ′(s), v′(s). The gauge transformation
can be conveniently written as

ϕ′
1 = α11ϕ1 + α12ϕ2 + β1ϕ1,s (4.1)

ϕ′
2 = α21ϕ1 + α22ϕ2 + β2ϕ1,s (4.2)

where the coefficients αij and βj are in general polynomials in k2 and functions of s to be
determined. Here we consider the simplest case when they do not depend on k2. Then, by
using explicitly the principal spectral problem (3.3) both for ϕ and ϕ′ and by identification of
the coefficients of ϕ1, ϕ2 and ϕ1,s we obtain

ϕ′
1 = −χ1,s

χ1
ϕ1 + ϕ1,s ϕ′

2 = −C
χ2

χ1
ϕ1 + Cϕ2. (4.3)

where C is an arbitrary constant and the vector χ satisfies the original spectral problem, with
k = h, h being an arbitrary constant,

χ1,ss + h2χ1 + iuχ2 − qχ1 = 0 χ2,s = vχ1. (4.4)

The y-dependence is obtained by requiring that the function χ obeys the auxiliary spectral
problem (3.4) written for k = h, namely

χ1,y = −ih2χ1 + 2uχ2 χ2,y = ih2χ2 + 2ivχ1,s − 2ivsχ1. (4.5)

The transformed potentials are then given in terms of χ by

q ′ = q − 2

(
χ1,s

χ1

)
s

u′ = 1

C

[
−u

χ1,s

χ1
+ us

]
v′ = −C

χ2

χ1
. (4.6)

This constitutes the Darboux transformation: given a set of potentials q, u and v and two
arbitrary constants C and h, the solution χ(s, y) of the linear systems (4.4), (4.5) furnishes
explicitly the new potentials, solution of (3.5), together with a corresponding eigenfunction.

Note that from (4.6) by eliminating via an integration the vector χ , we obtain the so-called
Bäcklund transformation (I = ∫ s ds ′ and d is a constant of integration)

q ′ + q − 1

2
[I (q ′ − q) + d]2 +

2i

C
uv′ − 2h2 = 0

(uv′)s − (u′v′ − uv)C = 0

2v′
s − v′[I (q ′ − q) + d] + 2Cv = 0

(4.7)

relating the old potentials q, u and v to the new ones q ′, u′ and v′.
It is worth remarking that for u = 0 the relation between q ′ and q is the Bäcklund

transformation for the Korteveg–de Vries equation [16].
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4.1. Non-localized one-soliton solution

The game consists in starting from a trivial solution q, u, v of the system (3.5) and, then, in
building via the Darboux transformation a new solution q ′, u′, v′. A convenient choice here is

q = 0 u = a v = b (4.8)

where a and b are two complex constants.
First, we solve (4.4) and (4.5) for this choice. If ω is a root of

ω(ω2 − h2) = ab (4.9)

a solution is given by

χ1 = exp

[
iω

(
s − ωy − ab

ω2
y

)]
χ2 = b

iω
exp

[
iω

(
s − ωy − ab

ω2
y

)]
(4.10)

and the general solution is a linear combination with constant coefficients of the three solutions
obtained considering the three roots of (4.9).

The parameters ab and h2 and the linear combination have to be chosen in such a way
that new solution q ′, u′, v′ is regular and satisfies the reduction u′ = v′. This analysis is more
easily done if ab and h2 are parametrized as follows:

ab = H 3 + K3 h2 = 3HK. (4.11)

Then, the roots of equation (4.9) can be written as

ω0 = H + K ω± = − 1
2 (H + K) ± i

√
3

2 (H − K). (4.12)

We fix ab and h2 by choosing

H,K ∈ R H 	= K (4.13)

and consider the special solution

χ1 = exp

[
iω

(
s − ωy − ab

ω2
y

)]
+ exp

[
iω

(
s − ωy − ab

ω2 y

)]
(4.14)

χ2 = b

iω
exp

[
iω

(
s − ωy − ab

ω2
y

)]
+

b

iω
exp

[
iω

(
s − ωy − ab

ω2 y

)]
where, thanks to (4.13),

ω ≡ ω+ = ω− ωIm 	= 0. (4.15)

Then it is straightforward to apply formulae (4.6) to obtain the new solution

q ′(y, s) = −2ω2
Im

cosh2[ωIm(s − 4ωRey)]

u′(y, s) = − a

C
{iωRe + ωIm tanh[ωIm(s − 4ωRey)]} (4.16)

v′(y, s) = 2ωRe
C

a
{−iωRe + ωIm tanh[ωIm(s − 4ωRey)]}

where we used

ab = −2ωRe|ω|2 (4.17)

which is valid for this special choice of H and K.
If we now demand v′ = u′, we get

−2ωRe =
∣∣∣ a
C

∣∣∣2 . (4.18)
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Since u′ is defined up to a constant phase, without loss of generality we can choose the
parameter a/C to be real and, finally, we end up in the following one-soliton solution of (1.6),

q ′(y, s) = −2ω2
Im

cosh2 [ωIm(s − 4ωRey)]
(4.19)

u′(y, s) = −
√

−2ωRe {iωRe + ωIm tanh [ωIm(s − 4ωRey)]} (4.20)

with ω a free complex parameter with ωRe < 0. Expressions (1.12) and (1.13) are recovered
for ωRe = −ζ and ωIm = η. This soliton propagates to the right and has in q the same profile
as the KdV soliton, while u has a kink-like shape.

4.2. Nonlinear superposition

An interesting property of integrable systems is the existence of a nonlinear superposition
principle, known also as the Bianchi theorem of permutability, which is quite a useful tool for
obtaining new explicit solutions by superimposing known solutions.

The nonlinear superposition formula can be obtained by using the gauge transformation
(4.3) rewritten in terms of the old and new transformed solutions. We compose two gauges
G1 and G2 and impose that they commute, namely that{

ϕ
G1−→ ϕ(1) G2−→ ϕ′

ϕ
G2−→ ϕ(2) G1−→ ϕ′.

(4.21)

Writing down explicitly that the vector ϕ′ is obtained indifferently following one path or the
other and remembering that the elements ϕ1, ∂sϕ1 and ϕ2 are linearly independent, after some
algebra we eventually obtain the following nonlinear superposition formula:

u′ = u1u2

u
+

u1u2,s − u2u1,s

C1u1 − C2u2

v′ = v1v2

v
+ 2v1v2

C1v2 − C2v1

v1,sv2 − v2,sv1
(4.22)

q ′ = q1 + q2 − q + 2∂2
s log

(
u

C1u1 − C2u2

)
.

The following alternative formula for v′ may be useful:

v′ = u
C1v2 − C2v1

C1u1 − C2u2
. (4.23)

Formula (4.22) furnishes, by a set of purely algebraic steps, an explicit new solution u′, v′, q ′

from three given solutions, i.e. u, v, q and its Bäcklund transformed solutions u1, v1, q1

and u2, v2, q2, obtained by the Darboux transformation (4.6) with parameters C1 and C2,
respectively.

4.3. Non-localized two-soliton solution

Starting from the trivial solution (4.8) one can construct two one-soliton solutions with different
parameters and, then, superimpose them with the above expression (4.22) to get a two-soliton
solution. However, this method does not work in the reduced case, since the superposition
formula does not preserve the reduction property nor the regularity of the solution. The
difficult task is to choose the intermediate solutions u1, v1, q1 and u2, v2, q2 in such a way that
the final solution u′, v′, q ′ is regular and satisfies the reduction requirement u′ = v′.
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It is convenient, first, to rewrite the superposition formula in terms of the eigenfunctions
χ(1) and χ(2) of the spectral problems (4.4) and (4.5) with potentials q = 0, u = a, v = b and
spectral parameters h(1) and h(2), respectively. We have from (4.6)

q1 = −2∂s

(
χ

(1)
1,s

χ
(1)
1

)
q2 = −2∂s

(
χ

(2)
1,s

χ
(2)
1

)

u1 = − a

C1

χ
(1)
1,s

χ
(1)
1

u2 = − a

C2

χ
(2)
1,s

χ
(2)
1

v1 = −C1
χ

(1)
2

χ
(1)
1

v2 = −C2
χ

(2)
2

χ
(2)
1

.

(4.24)

Inserting these expressions into the superposition formula (4.22), after some algebra, we obtain

q ′ = −2∂s

[
χ

(1)
1,ssχ

(2)
1 − χ

(2)
1,ssχ

(1)
1

χ
(1)
1,s χ

(2)
1 − χ

(2)
1,s χ

(1)
1

]

u′ = a

C1C2

χ
(1)
1,ssχ

(2)
1,s − χ

(2)
1,ssχ

(1)
1,s

χ
(1)
1,s χ

(2)
1 − χ

(2)
1,s χ

(1)
1

v′ = C1C2
χ

(1)
1 χ

(2)
2 − χ

(2)
1 χ

(1)
2

χ
(1)
1,s χ

(2)
1 − χ

(2)
1,s χ

(1)
1

.

(4.25)

We choose two couples of real parameters H(1), K(1) (H (1) 	= K(1)) and H(2), K(2) (H (2) 	=
K(2)) such that

H(1)3 + K(1)3 = H(2)3 + K(2)3 (4.26)

and define

ω(j) = − 1
2 (H (j) + K(j)) ± i

√
3

2 (H (j) − K(j)) (j = 1, 2). (4.27)

Then, we consider (j = 1, 2)

χ
(j)

1 = eiY (j)[
α

(j)

1 e−X(j)

+ α
(j)

2 eX(j)]
χ

(j)

2 = −ib eiY (j)

[
α

(j)

1

1

ω(j)
e−X(j)

+ α
(j)

2

1

ω(j)
eX(j)

] (4.28)

with

X(j) = ω
(j)

Im

(
s − 4ω

(j)

Re y
)

(4.29)

Y (j) = ω
(j)

Re s + |ω(j)|2y (4.30)

and α
(j)

i arbitrary constants to be chosen. These vector functions χ(1) and χ(2) satisfy the
spectral problems (4.4) and (4.5) with potentials q = 0, u = a, v = b and spectral parameters
h(1) and h(2), respectively, when ab and h(1) and h(2) are chosen as follows:

ab = H(1)3 + K(1)3 = H(2)3 + K(2)3 (4.31)

h(1)2 = 3H(1)K(1) h(2)2 = 3H(2)K(2). (4.32)

Therefore, by inserting the χ(j) defined in (4.28) into (4.25) we get a new solution of (3.5).
We take advantage of the freedom in the choice of the constants α

(j)

i in order to get a regular
solution.
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In fact by taking

α
(1)
1 =

√
(ω(1) − ω(2))(ω(1) − ω(2)) α

(1)
2 =

√
(ω(1) − ω(2))(ω(1) − ω(2))

α
(2)
1 =

√
(ω(1) − ω(2))(ω(1) − ω(2)) α

(2)
2 =

√
(ω(1) − ω(2))(ω(1) − ω(2))

we obtain the regular solution

q ′ = −2∂s

M(y, s)

D(y, s)
(4.33)

u′ = − a

2C1C2

N(y, s)

D(y, s)
(4.34)

v′ = − bC1C2

2|ω(1)ω(2)|2
N(y, s)

D(y, s)
(4.35)

where

M(y, s) = |ω(1) − ω(2)| Im(ω(1) + ω(2)) sinh(X(1) + X(2))

+ |ω(1) − ω(2)| Im(ω(1) + ω(2)) sinh(X(1) − X(2)) (4.36)

N(y, s) = |ω(1) − ω(2)|(ω(1)ω(2) eX(1)+X(2)

+ ω(1)ω(2) e−X(1)−X(2))
+ |ω(1) − ω(2)|(ω(1)ω(2) eX(1)−X(2)

+ ω(1)ω(2) e−X(1)+X(2))
(4.37)

D(y, s) = |ω(1) − ω(2)| cosh(X(1) + X(2)) + |ω(1) − ω(2)| cosh(X(1) − X(2)). (4.38)

This solution satisfies the constraint u′ = v′ if

|C1C2|2 b

a
= |ω(1)ω(2)|2 (4.39)

or, equivalently, recalling (4.17), if∣∣∣∣ a

C1C2

∣∣∣∣2 = −2
ω

(1)
Re

|ω(2)|2 . (4.40)

In conclusion, taking into account that u′ and v′ are defined up to a constant phase, the
two-soliton solution is given by

q ′ = −2∂s

M(y, s)

D(y, s)
(4.41)

u′ = 1√
2

√
−ω

(1)
Re∣∣ω(2)
∣∣ N(y, s)

D(y, s)
(4.42)

for any choice of the two complex parameters ω(1) and ω(2) satisfying the constraints

ω
(1)
Re |ω(1)|2 = ω

(2)
Re |ω(2)|2 (4.43)

ω
(j)

Re < 0 ω
(j)

Im 	= 0 (j = 1, 2). (4.44)

Note that q ′ vanishes at large s, while u′ goes to a constant.
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Appendix

We study properties of the Jost solution ψ+ defined by the coupled system of integral equations
in (3.9) for potentials q, u and v satisfying (3.11).

Inserting ψ+
2 from the second equations into the first one of (3.9) we have

ψ+
1 = 1

k + i0
U(s, k) +

1

k + i0
C(k) +

∫ s

−∞
ds ′ e

ik(s−s ′) − 1

2ik

[
qψ+

1 + iu
∫ +∞

s ′
ds ′′vψ+

1

]
+
∫ +∞

s

ds ′ e
−ik(s−s ′) − 1

2ik

[
qψ+

1 + iu
∫ +∞

s ′
ds ′′vψ+

1

]
(A.1)

where

U(s, k) = −1

2

∫ s

−∞
ds ′eik(s−s ′)u(s ′) − 1

2

∫ +∞

s

ds ′ e−ik(s−s ′)u(s ′) (A.2)

C
[
ψ+

1

]
(k) = 1

2i

∫ +∞

−∞
ds ′

[
q(s ′)ψ+

1 (s ′) + iu(s ′)
∫ +∞

s ′
ds ′′v(s ′′)ψ+

1 (s ′′)
]

= 1

2i

∫ +∞

−∞
ds ′

[
q(s ′) + iv(s ′)

∫ s ′

−∞
ds ′′u(s ′′)

]
ψ+

1 (s ′, k). (A.3)

Note that for potentials q, u and v satisfying (3.11), U(s, k) is bounded, |U(s, k)| � M , and
analytical in upper half plane of k , C[ψ](k) is a linear functional of ψ(k, s) independent of s
and bounded in the domain of the k plane where ψ is bounded.

If we introduce � and � defined by the following integral equations,

� = U(s, k) +
∫ s

−∞
ds ′ e

ik(s−s ′) − 1

2ik

[
q� + iu

∫ +∞

s ′
ds ′′v�

]
+
∫ +∞

s

ds ′ e
−ik(s−s ′) − 1

2ik

[
q� + iu

∫ +∞

s ′
ds ′′v�

]
(A.4)

� = 1 +
∫ s

−∞
ds ′ e

ik(s−s ′) − 1

2ik

[
q� + iu

∫ +∞

s ′
ds ′′v�

]
+
∫ +∞

s

ds ′ e
−ik(s−s ′) − 1

2ik

[
q� + iu

∫ +∞

s ′
ds ′′v�

]
(A.5)

then

ψ+
1 = 1

(k + i0)

(
� + C

[
ψ+

1

]
(k)�

)
. (A.6)

If we prove that �(s, k) and �(s, k) are bounded and analytical in the upper half plane
of k, since

C
[
ψ+

1

]
(k) = C[�](k)

k − C[�](k)
(A.7)
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we deduce that C
[
ψ+

1

]
(k) is analytical in the upper half plane with poles at the zeros of

k − C[�](k) and bounded, once the poles are subtracted. We conclude from (A.6) that
ψ+

1 (s, k) is analytical in the upper half plane of k with a factorizing singular behaviour 1/k +i0
at k = 0 and possible poles and, once the poles and the origin are subtracted, bounded in s
and k.

The only property of U(s, k) that we will use in the following is that U(s, k) is analytical
in the upper half plane of k and bounded in k and s. Therefore, it is enough to consider (A.4)
since the integral equation (A.5) can be considered a special case with U(s, k) = 1, which is
trivially bounded and analytical.

Exchanging the order of the integrals in (A.4) we get

� = M

6

 3∑
j=1

�j +
−3∑

j=−1

�j

 (A.8)

where the �j are solutions of the integral equations

�j(s, k) = U(s, k)

M
+
∫

ds ′Kj(s, s
′, k)�j (s

′, k) (j = ±1,±2,±3) (A.9)

with kernel

K±1(s, s
′, k) = θ(±(s − s ′))q(s ′)

e±ik(s−s ′) − 1

2ik
(A.10)

K±2(s, s
′, k) = θ(±(s − s ′))v(s ′)

∫ s ′

∓∞
ds ′′ e

±ik(s−s ′′) − 1

2k
u(s ′′) (A.11)

K±3(s, s
′, k) = ±θ(s ′ − s)v(s ′)

∫ s

∓∞
ds ′′ e

±ik(s−s ′′) − 1

2k
u(s ′′). (A.12)

All the equations (A.9) are solved by a series

�j(s, k) =
+∞∑
n=0

�
(n)
j (s, k) (A.13)

constructed through the recursion relation

�
(n+1)
j (s, k) = U(s, k) +

∫
ds ′Kj(s, s

′, k)�
(n)
j (s ′, k) �

(0)
j (s, k) = U(s, k). (A.14)

We obtain a majorant �̂(n)
j of

∣∣�(n)
j

∣∣ by considering the corresponding term of a series expansion
of the solution of the integral equation

�̂j (s, k) = 1 +
∫

|ds ′ |̂kj (s, s
′, k)�̂j (s

′, k) (A.15)

where k̂j (s, s
′, k) is a convenient majorant of Kj(s, s

′, k), i.e.

|Kj(s, s
′, k)| � k̂j (s, s

′, k). (A.16)

If the series
∑

n �̂
(n)
j is uniformly convergent for kIm � 0, then each iterated term �

(n)
j is

absolutely bounded by the nth term of a uniformly convergent series and since the �
(n)
j are

analytical for kIm � 0 and continuous as kIm → 0, we conclude that �(s, k) is an analytical
function of k for kIm � 0, continuous as kIm → 0 and bounded if �̂(s, k) is bounded.

We must, therefore, construct the kernels k̂j (s, s
′, k) for each of the above

equations (A.15). We follow a procedure analogous to that exposed in [18].
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Recalling that∣∣∣∣ sin Z

Z

∣∣∣∣ � 2γ
e|ImZ|

1 + |Z| (A.17)

for an appropriate constant γ and that

0 � x − y � I (−x)I (y) for I (x) = 1 + |x|θ(−x) (A.18)

we have for s − s ′ � 0 and kIm � 0∣∣∣∣∣e±ik(s−s ′) − 1

2ik

∣∣∣∣∣ � γ

{ 2
|k|
I (∓s)I (±s ′).

(A.19)

Therefore, the majorant kernels are of the form

k̂±j (s, s
′, k) = θ(±(s − s ′))α±j (s, k)β±j (s

′) j = 1, 2 (A.20)

k̂±3(s, s
′, k) = θ(s ′ − s)α±3(s, k)β±3(s

′) (A.21)

with two possible choices of αj and βj , i.e.

α±1(s, k) = γ I (∓s) β±1(s
′) = I (±s ′)|q(s ′)|

α±2(s, k) = γ I (∓s) β±2(s
′) = ±|v(s ′)|

∫ s ′

∓∞
dtI (±t)|u(t)|

α±3(s, k) = ±γ I (∓s)
∫ s

∓∞ dtI (±t)|u(t)| β±3(s
′) = |v(s ′)|

(A.22)

or

α±1(s, k) = 2γ

|k| β±1(s
′) = |q(s ′)|

α±2(s, k) = 2γ

|k| β±2(s
′) = ±|v(s ′)| ∫ s ′

∓∞ dt |u(t)|

α±3(s, k) = ±2γ

|k|
∫ s

∓∞
dt |u(t)| β±3(s

′) = |v(s ′)|.

(A.23)

Then, the integral equations (A.15) are of the form

F±(s) = 1 ±
∫ ±∞

s

ds ′α(s)β(s ′)F±(s ′). (A.24)

Their solution is given by

F±(s) =
+∞∑
n=0

F
(n)
± (s) (A.25)

where

F
(n+1)
± (s) =

∫ ±∞

s

ds ′α(s)β(s ′)F (n)
± (s ′) F

(0)
± (s) = 1. (A.26)

By induction one can prove that

n!F (n+1)
± (s) = α(s)

∫ ±∞

s

ds ′β(s ′)

(∫ s ′

s

dtα(t)β(t)

)n

(A.27)

and, therefore,

F±(s) = 1 ± α(s)

∫ ±∞

s

ds ′β(s ′) exp

[
±
∫ s ′

s

dtα(t)β(t)

]
. (A.28)
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If ∫ +∞

−∞
dt α(t)β(t) < +∞

∫ +∞

−∞
dt β(t) < +∞ (A.29)

then the F±(s) are defined by a uniformly convergent series. In addition, we have

F±(s) − 1 � Cα(s)

∫ +∞

s

ds ′β(s ′) with C = exp
∫ +∞

−∞
dt α(t)β(t). (A.30)

The conditions in (A.29) are satisfied for all integral equations if the potentials q, u and v

satisfy (3.11).
Therefore, we conclude that the �i(s, k) and �i(s, k) (i = 1, 2, . . . , 6) are analytical in

the upper half plane of k. Moreover, since the majorant integral equations satisfy (A.30) with
α and β as in (A.22) and (A.23), the �i(s, k) and �i(s, k) are also bounded in s and k.
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