- Black Hole

5-Dimensional — Anti-de Sitter Spacetime

 $\Psi \sim z^{\Delta}$

Holography (x, z) Holography (z=0) For models of compositeness

Alex Pomarol, UAB & IFAE (Barcelona)

 $\Psi(\mathbf{x},\mathbf{z}=\mathbf{z}_0)=\mathbf{0}$

4-Dimensional Flat Spacetime (hologram) Understanding the properties of strongly-coupled theories is of major interest:

- Understanding QCD
- Torophidyrhyrmias Margeherate large hierarchies:

 $rac{}$ explain $m_w \ll M_P$

could also be useful for fermion masses, axions, inflation,...

 $m_H \lesssim \Lambda_* \sim \text{TeV} \ll M_P$

• Enlarge our charting on EFTs

Beyond the lamp-post:


```
We can well-define
                      UV
  the UV theory:
  gauge-symmetry
  + matter content
e.g. SU(N_c) + N_F q_{L,R}
```

IR

The AdS/CFT correspondence

Weakly-coupled Gravitational systems in higher-dimensions

explicit examples: N=4 SUSY \leftrightarrow AdS₅ x S₅, ...

A more "low-energy" EFT approach: Built a 5D EFT with the "basic" ingredients needed to describe the properties of the strong-dynamics

e.g. QCD-like theory ($N_F=3$) with chiral-symmetry breaking:

4D relevant operators:	<u>5D fields</u> :	$\mathbf{SU}(3)_L imes \mathbf{SU}(3)_R$
$(\overline{q_R q_L} \longrightarrow$	scalar Φ	$(\overline{3},3)$
$\bar{q}_L \gamma^\mu q_L \longrightarrow$	vector L_M	(8,0)
$\bar{q}_R \gamma^\mu q_R \longrightarrow$	vector R_M	(0,8)

Symmetry breaking $U(3)_{Lx}U(3)_{R} \rightarrow U(3)_{V}$ a la Higgs in 5D: $\langle \Phi \rangle \neq 0$

Kaluza-Klein states = QCD resonances (Weakly-coupled for large N_c)

Why extra-dimensional models are models of compositeness?

Impressive similarity with QCD

even at the qualitative level (for lightest resonance physics)

	Fynorimont	AdS-	Dovistion
	Experiment	AUD5	Deviation
$m_ ho$	775	824	+6%
${m_a}_1$	1230	1347	+10%
m_{ω}	782	824	+5%
$F_{ ho}$	153	169	+11%
$F_\omega/F_ ho$	0.88	0.94	+7%
F_{π}	87	88	+1%
$g_{ ho\pi\pi}$	6.0	5.4	-10%
L_9	$6.9 \cdot 10^{-3}$	$6.2 \cdot 10^{-3}$	-10%
L_{10}	$-5.2 \cdot 10^{-3}$	$-6.2 \cdot 10^{-3}$	-12%
$\Gamma(\omega o \pi \gamma)$	0.75	0.81	+8%
$\Gamma(\omega \to 3\pi)$	7.5	6.7	-11%
$\Gamma(ho o \pi \gamma)$	0.068	0.077	+13%
$\Gamma(\omega o \pi \mu \mu)$	$8.2 \cdot 10^{-4}$	$7.3 \cdot 10^{-4}$	-10%
$\Gamma(\omega \to \pi e e)$	$6.5 \cdot 10^{-3}$	$7.3 \cdot 10^{-3}$	+12%

Average error ~ 10%

Why simple holographic models work so well for QCD? (for the lightest resonance physics)

- Theory of weakly-coupled spin=0,1,2 resonances: Incorporates the successes of large-Nc QCD
- Reproduces the **conformal** properties of QCD at the UV
- Predicts Vector Meson Dominance (VMD), incorporating its successes

Holography for composite Higgs

<u>The Higgs</u>, the lightest of the new strong resonances, as pions in QCD: they are <u>Pseudo-Goldstone Bosons</u> (PGB)

Holo. coordinate z ~ I/μ

Symmetry breaking $SO(5) \rightarrow SO(4)$ a la Higgs in 5D: $\langle \Phi \rangle \neq 0$

► 4 PGBs = 2_1 of SU(2)xU(1) \in SO(4) \equiv the Higgs

Fermion masses

(the best lesson from holography)

Holographic Composite Higgs

Simple geometric approach to fermion masses

Using the AdS/CFT dictionary:

linear-mixing: $\mathcal{L}_{\text{lin}} = \epsilon_{f_i} \bar{f_i} \mathcal{O}_{f_i}$ fermion operator of the strong sector

 ϵ_f depend on the dim of the operator

 $\operatorname{Dim}[\mathcal{O}_{f_i}] = \mathbf{3}/\mathbf{2} + |\mathbf{M_5L} + \mathbf{1}/\mathbf{2}|$

For the top, we need large mixing: $Dim[O_{top}] \lesssim 5/2$ needed!

e.g. $\mathcal{O}_{f_i} \sim \psi \psi \psi$ 9/2(weak) \rightarrow 5/2(strong)

AdS₅ prediction:

As dim[\mathcal{O}_{top}] $\rightarrow 3/2 \implies M_5L \rightarrow -1/2 \implies top-partners become light!$

Higgs mass from AdS₅ models:

Exist QFTs with this property?

Light top partners also understood from the CFT₄ perspective: As dim[\mathcal{O}_{top}] $\rightarrow 3/2$ \blacktriangleright Unitarity bound \blacktriangleright free fermion \blacktriangleright massless! Flavor challenge II:

linear-mixing: $\mathcal{L}_{\text{lin}} = \epsilon_{f_i} \, \overline{f_i} \, \mathcal{O}_{f_i}$

New sources of flavor breaking Compatible with exp. bounds? Flavor challenge II:

linear-mixing: $\mathcal{L}_{\text{lin}} = \epsilon_{f_i} \, \bar{f_i} \, \mathcal{O}_{f_i}$

New sources of flavor breaking

Compatible with exp. bounds?

Potentially large dipoles (e.g. EDMs, $\mu \rightarrow e\gamma$):

crucial property of holographic models

Chiral Perturbation Theory **Flavor challenge**. The most general effective chiral Lagrangian of $O(p^4)$, \mathcal{L}_4 , to be considered One-loop graphs associated with the lowest-order Lagrangian \mathcal{L}_2 . 2. $\mathcal{L}_{\text{lin}} \stackrel{3.}{=} \underbrace{\text{The Wess}}_{anomply} \underbrace{\mathcal{L}_{iin}}_{iinfly} \underbrace{\mathcal{L}_{iin}}_{iinfly} \underbrace{\mathcal{L}_{iinfly}}_{iinfly} \underbrace{\mathcal{L}_{iinfly}}_{iinfly}$ linear-mixing: New sources of having prevalue the chiral Lagrangian of $O(p^4)$, \mathcal{L}_4 , to be considered Compatible $\mathcal{L}_{4}^{\text{level.}}$, the most general [§] Lagrangian, invariant under parity, charge c and the local chiral transformations (3.14), is given by (Gasser and Leutwy and the local chiral transformations (3.14), is given by (Gasser and Leutwy $\mathcal{L}_{4}^{\text{anon}} \mathcal{L}_{1}^{\text{alp}} \mathcal{L}_{4}^{\text{bull}} \mathcal{L$ Strong sector The Lier $M_{\nu}^{\dagger}D_{\nu}^{\mu}U$ (1) at the properties of M_{ν}^{\dagger} and are therefore with directly measurable M_{λ}^{\dagger} and $M_{\nu}^{\dagger}D_{\nu}^{\dagger}D_{\nu}^{\dagger}D_{\nu}^{\dagger}$ and $M_{\nu}^{\dagger}D_$ coupling constants L_i to determine the low-energy behaviour of the Green $L_2 \subset F_R^{\mu} D = U D U + F_L^{\mu} D U + L_{10} \subset F_R^{\mu} U F_{L_{\mu\nu}}$ **Crucial proprese constants parametrize our Generative about** the details of the underl dynamics. In the principle, Fally the chiral 200 uplings are calculable functions of

Also in QCD? heavy-quark masses. Let the prosent fine, however, our main source of in about these couplings is low-energy phenomenology. $O(p^4)$ we need ten add

coupling constants L_i to determine the low-energy behaviour of the Green fur

New flavor-violating & CP-violating transitions

Lower bounds on the scale of the strong dynamics Λ

Towards suppressing dipoles

Avoid linear mixing of light fermions to BSM:

Flavor without symmetries!

New flavor-violating & CP-violating transitions

Lower bounds on the scale of the strong dynamics Λ

1 Expected spectrum in Composite Higgs Scenarios

1 Expected spectrum in Composite Higgs Scenarios

But nothing yet seen at the LHC:

The situation starts being worrisome, but not yet desperate

Are we missing something?

New inside from Lattice...

Conformal window in SU(3) with large number of fermions (N_F)

